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The pivot penalty in research

Ryan Hill1,2,10, Yian Yin1,3,4,5,10, Carolyn Stein6,7, Xizhao Wang2, Dashun Wang1,2,3,4,8 ✉ & 
Benjamin F. Jones1,2,3,9 ✉

Scientists and inventors set the direction of their work amid evolving questions, 
opportunities and challenges, yet the understanding of pivots between research  
areas and their outcomes remains limited1–5. Theories of creative search highlight  
the potential benefits of exploration but also emphasize difficulties in moving beyond 
one’s expertise6–14. Here we introduce a measurement framework to quantify how  
far researchers move from their existing work, and apply it to millions of papers and 
patents. We find a pervasive ‘pivot penalty’, in which the impact of new research steeply 
declines the further a researcher moves from their previous work. The pivot penalty 
applies nearly universally across science and patenting, and has been growing in 
magnitude over the past five decades. Larger pivots further exhibit weak engagement 
with established mixtures of prior knowledge, lower publication success rates and  
less market impact. Unexpected shocks to the research landscape, which may push 
researchers away from existing areas or pull them into new ones, further demonstrate 
substantial pivot penalties, including in the context of the COVID-19 pandemic. The 
pivot penalty generalizes across fields, career stage, productivity, collaboration and 
funding contexts, highlighting both the breadth and depth of the adaptive challenge. 
Overall, the findings point to large and increasing challenges in effectively adapting to 
new opportunities and threats, with implications for individual researchers, research 
organizations, science policy and the capacity of science and society as a whole to 
confront emergent demands.

Science has been described as an endless frontier1,3,15,16. New opportuni-
ties and challenges continuously emerge, from synthetic biology or cli-
mate change to the COVID-19 pandemic, and researchers and research 
organizations must consider adapting their research portfolios to 
address these emergent demands4,5,17–19. Adaptability is thus crucial 
for scientific and technological progress1,3,15, and adaptive success or 
failure can underpin the relative progress or collapse of organizations, 
economic regions and societies1,3,15,16,20,21.

The adaptability of research streams hinges on researchers, who 
must regularly consider the direction of their work and their potential 
to engage with new areas. Researchers face consequential choices 
across large or small changes in their research directions, but the degree 
to which research directions are adaptable depends on fundamen-
tal trade-offs and unknowns. On one hand, shifts in research may be 
difficult14, because the specialization of expertise12,13,22, the design of 
funding systems23,24 and the nature of research incentives, culture and 
communities7,25–27 may all limit the capacity of a given individual to 
respond effectively to changing opportunities and demands28–32. On 
the other hand, the value of novelty8,33,34 and exploration6,9,35 in creative 
search suggests that moving further from one’s usual research area 
might be particularly fruitful10,11,14,36, and new entrants or ‘outsiders’ to 
a given area are sometimes thought to be especially capable of trans-
formative ideas7,37. Indeed, a researcher who continues to exploit an 
existing direction may face diminishing returns and miss opportunities 

afforded in other areas6,38. Exploring new areas might be risky, but it 
may also be more likely to produce high-impact insights.

Here we study the adaptability of scientists and inventors, and exam-
ine the outcomes when researchers work in areas nearer or further from 
their existing research portfolio. We introduce a measurement frame-
work for research pivots and then study adaptability in both general and 
specific settings. We first apply the measurement framework at high 
scale across scientific and technological domains, studying millions 
of scientific articles indexed by Dimensions from 1970 to 2020 and US 
patents granted from 1985 to 2020 (Supplementary sections 1.1–2). The 
core finding is that there is a substantial pivot penalty, meaning that 
the further a researcher moves from their previous work, the worse 
the research performs in terms of citation impact, publication success 
and a host of other outcomes. The negative effects of pivoting occur 
for individual researchers, across wide-ranging fields of inquiry, and 
have been increasing over time. We then evaluate the pivot penalty in 
terms of canonical conceptual frameworks, and investigate potential 
mechanisms, drawing on ideas of reputation and audience32,39–41, as well 
as creativity frameworks in the production of new ideas6,8,12. Finally, 
we turn to case studies of substantial interest to science and in which 
exogenous events can elicit research pivots. We study ‘push’ events, 
in which existing knowledge is revealed to be incorrect or unreliable, 
pushing researchers away from their previous research streams. We also 
study a ‘pull’ event—the COVID-19 pandemic—that drew researchers into 
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an important new research area. We find that despite the wide-ranging 
nature of these events, researchers pivot to an unusually large degree 
after these events, and the pivot penalty persists in each case. The pan-
demic also allows us to examine a consequential, society-scale event 
and the capacity of science as a whole to address the new research 
demands. We conclude with a discussion about the implications of these 
findings for researchers, research organizations and science policy.

Measurement framework
To quantify pivots for researchers, we calculated a cosine-similarity 
metric that measures the extent to which a given new work departs 
from a researcher’s previous body of work (Fig. 1a and Pivot size in the 
Methods). For papers, we considered the referenced journals, com-
paring the focal work with the previous body of work for that author. 
The pivot measure, Φ, varies on the [0,1] interval. It takes the value 0 
(zero pivot) if the focal paper draws on exactly the same distribution 
of journals as the author’s previous work, and takes the value 1 (full 
pivot) if the focal paper draws on an entirely different set of journals. 
In the patent context, for which journal information is not available, 
we use technological field codes to measure pivots (see Pivot size and 
Supplementary section 2.2 for details and alternative constructions 
of the pivot measure).

Figure 1 shows the distribution of pivoting behaviour, focusing on 
the year 2020. Pivoting values ranged across the [0, 1] interval in both 
the science and patenting contexts, indicating that pivoting is prevalent 
for both scientists and inventors (Fig. 1b,c). We also observed a sharp 
increase in pivot size for research related to COVID-19, in that scientists 
who engaged with COVID-19 exhibited unusually large pivots; whereas 
papers not related to COVID-19 in 2020 have a median of Φ = 0.60, 

COVID-19 papers present a substantially larger median pivot size  
of Φ = 0.82  (P < 0.001, chi-squared test for median differences).  
The variable nature of pivot size is particularly prominent in patenting, 
for which we observed a bimodal distribution (Fig. 1c), showing a ten-
dency for both small and large jumps. Supplementary section S2.2 
provides further analysis of these patterns, demonstrates their robust-
ness across alternative pivot measures and offers specific examples of  
pivoting.

The pivot penalty
When scientists and inventors shift away from their earlier research, 
a central question is how impactful their new work becomes. We first 
considered 25.8 million papers published from 1970 to 2015 across 154 
fields. To quantify impact, we calculated a binary, paper-level indica-
tor for whether a given work was in the upper 5% of citations received 
in its field and publication year42. In Fig. 2a, the data are presented as 
binned scatterplots, with papers grouped by pivot size into 20 equally 
sized groups and showing the mean rate of high-impact papers for 
each group (see Binned scatterplots in the Methods). Figure 2a reveals 
a striking fact: across the whole of science, papers with larger average 
pivots have a systematically lower propensity for high impact. Indeed, 
we observed a large, monotonic decrease in the average hit rate as the 
pivot size rises. The lowest-pivot work had high impact 7.4% of the time, 
which is 48% higher than the baseline rate (P < 0.001 in one sample 
t-test), whereas the highest-pivot work had high impact only 2.2% of the 
time, which is a 56% reduction from the baseline (P < 0.001). Figure 2b 
normalizes impact for individual researchers using regressions with 
individual fixed effects (see Regressions with individual fixed effects in 
the Methods), showing an impact penalty that is both substantial and 
less steep than in the raw data. Within a given researcher’s portfolio, 
the lowest-pivot work was 2.1% more likely (P < 0.001 in regression 
t-test) to have high impact than that researcher’s other work, and their 
highest-pivot work was 1.8% less likely (P < 0.001) to have high impact, 
again showing large deviations from the 5% baseline.

We next considered 1.72 million patents granted from 1980 to 
2015 across 127 technology classes, and we similarly calculated the 
patent-level hit rate based on being in the upper 5% of citations received 
in the patent’s technology classification and application year. We 
again found a monotonic decrease in impact as pivot size increased 
(Fig. 2c). The lowest-pivot patents had high impact 8.0% of the time, 
which is 60% higher than the baseline rate (P < 0.001 in one-sample 
t-test), but the highest-pivot patents had high impact only 3.8% of the 
time, a 24% reduction from the baseline (P < 0.001). This decline in 
impact with larger pivots was robust to measuring inventor pivots at 
any technology-classification level, from the broadest to the narrow-
est (Supplementary Fig. 1). Figure 2d further normalizes impact for 
individual inventors and continues to show the pivot penalty.

The relationship between pivot size and impact in science has 
become increasingly negative over the past five decades, both in the 
raw data (Fig. 2e) and when looking at individual researchers (Extended 
Data Fig. 1a,b). Furthermore, these findings generalize widely across 
scientific fields. Studying each of the 154 subfields separately, the nega-
tive relationship between impact and pivot size held for 93% of fields, 
and the increasing severity of the pivot penalty over time occurred in 
88% of all scientific fields (Supplementary Table 1). Turning to patent-
ing, we again observed an increasingly steep pivot penalty with time 
(Fig. 2f). Studying 127 level-2 technology classes separately, the nega-
tive relationship between impact and pivot size held in 91% of classes, 
with the severity of the pivot penalty growing over time in 76% of patent 
classes (Supplementary Table 2). This steepening pivot penalty among 
inventors was also seen when using broader or narrower technologi-
cal classifications (Supplementary Fig. 2). Earlier years for patenting 
showed flatter, less-monotonic relationships in the raw data (Fig. 2f) 
and within inventors’ portfolios (Extended Data Fig. 1c,d).
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Fig. 1 | Quantifying research pivots. a, The pivot measure compares a focal 
work against previous works by the same researcher. An increasing value on the 
[0,1] interval indicates a larger pivot from the researcher’s previous work. In the 
sciences, journals are used to define research areas (pictured); in patenting, 
technology classes are used. b, The distribution of author pivots in 2020 
(n = 8.32 million author-by-paper observations) is dispersed across the [0, 1] 
interval. c, The distribution of inventor pivots in 2020 (n = 166,000 inventor-
by-patent observations) is dispersed across the [0, 1] interval and is bimodal. 
COVID-19 papers (b) showed higher median pivots than other papers in 2020. 
Fig. 1a, icons adapted from the Noun Project (https://thenounproject.com).
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The findings of a substantial impact penalty are robust to many 
alternative measures and sample restrictions (see Supplementary 
sections 2.2–2.3 and 3.1–3.2 for analysis and further examination of 
high-pivot cases and outlier fields). Robustness tests considered: alter-
native time windows to determine citation impact (Extended Data 
Fig. 2); alternative measures of citation impact (Extended Data Fig. 3); 
sample restrictions to papers with larger reference counts (Supplemen-
tary Table 3); alternative pivot-size computation based on referenced 
papers’ field coding, as opposed to their journals (Supplementary 
Fig. 3); alternative field encodings for patents (Extended Data Fig. 4 
and Supplementary Figs. 1, 2 and 4); and hand checks on high-pivot 
researchers (Supplementary section 3.1).

When examining outcomes, one can also look beyond the citation 
impact. For papers, we further measured whether a published paper was 
referenced in a future patent3,43, indicating the use of the idea beyond 
science. There was a large decline in patent references to high-pivot 
articles, with the probability of being cited in a patented invention 
declining by 43% (P < 0.001 in a two-sample t-test) when comparing 
the highest-pivot with the lowest-pivot vigintiles of papers (Extended 
Data Fig. 5b). We also examined the propensity for preprints to be pub-
lished and found that higher-pivot preprints were published at substan-
tially lower rates, with publication rates for the highest-pivot papers 

declining by 35% (P < 0.001) compared with the lowest-pivot papers, 
indicating another form of the pivot penalty (Extended Data Fig. 6). For 
patents, we considered the invention’s market value based on how a 
company’s stock price moved in response to the patent being issued44. 
The market value of a patented invention decreased steeply with pivot 
size, declining by 29% (P < 0.001) when comparing the highest-pivot 
with the lowest-pivot patents (Extended Data Fig. 7). These findings 
indicate that the pivot penalty also appears when considering publica-
tion success, practical use and market value, pointing to a constellation 
of outcomes that go beyond the citation behaviour within a community 
of researchers.

Altogether, we observed striking empirical regularities that gen-
eralize across science and technology. Despite the distinct nature of 
scientific articles and patents, the institutional contexts in which they 
are produced, the wide range of research fields and their alternative 
outcome measures, they have remarkable commonalities: for both 
scientists and inventors, greater pivots bring large penalties, and this 
increases over time.

Conceptual frameworks and mechanisms
Our findings indicate that researchers face substantial challenges 
when entering new subject areas, heightening concerns in innova-
tion communities that research with wide reach or new orientations is 
difficult12–14,18,25. Entering new areas may be challenging as a matter of 
reception, whereby a scholar has difficulty penetrating new audiences, 
and it may be challenging as a matter of idea generation, as scholars 
can face problems generating valuable ideas outside their key areas of 
competency. To further inform the nature of the pivot penalty, we next 
examined the pivot penalty in view of both reputational perspectives 
and idea generation.

An established reputation in a local research community may 
provide impact advantages within that community but be a relative 
disadvantage outside it39. For example, the ‘Matthew effect’39,40 sug-
gests advantages of established eminence within a community, but 
‘typecasting’32,41,45 may undermine the reception when entering new 
areas. These and other reputational considerations indicate that the 
pivot penalty may emerge because researchers move beyond their 
usual audience. To test these considerations, we first examined pivots 
holding the researcher’s field or local audience fixed. Specifically, we 
examined what happens when a given researcher publishes multi-
ple papers with different pivot sizes but in the same time frame and 
field, even in the same journal (Supplementary Table 4). We found 
that the pivot-penalty regression coefficient was approximately 26% 
less steep (Supplementary Table 4) when an individual published in 
the same journal, an attenuation that is consistent with a weakening 
of reputational forces when looking within a common audience, but 
most of the relationship remained. The pivot penalty thus persisted 
when the researcher published in a consistent field or before a consist-
ent, local readership. A related approach considered impact within a 
given, distant audience. Recalling the findings for patented applications 
(Extended Data Fig. 5) and market value (Extended Data Fig. 7), the 
pivot penalty also appeared when examining how inventors draw on 
science or how investors value inventions. These evaluations are made 
by individuals who are far away from the focal researcher. In sum, the 
pivot penalty appears not simply as a matter of movement across fields, 
or from a local audience to a distant audience. Rather, it appears for a 
researcher within a given field or journal, and it appears within distant 
communities focused on practical use and market returns.

Reputational considerations may be further informed by consider-
ing career stage. Specifically, younger researchers, with less-formed 
reputations, may see less advantage (the Matthew effect) from staying 
in a given area or less penalty (typecasting) from venturing outside it41,46. 
Studying career stage, the pivot penalty was slightly stronger (1.6% 
steeper per year, P < 0.001, regression coefficient t-test; Supplementary 
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Fig. 2 | The pivot penalty. a, In a study of 25.8 million papers published  
from 1970 to 2015, papers with higher pivot size have substantially lower 
probabilities of being high impact. b, For a particular author, relative impact  
for their papers declines steeply with pivot size. c, In a study of 1.72 million  
US patents granted from 1980 to 2015, patents with higher pivot size have 
substantially lower probabilities of being high impact. d, For a particular 
inventor, relative impact for their patents declines with pivot size. e,f, Over 
time, the relationship between pivot size and high-impact works has become 
increasingly negative in science publishing (e) and patenting (f).
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Table 5) with advancing career age, consistent with these reputational 
frameworks. Yet the pivot penalty appears regardless of career stage, 
including very early in the career (Supplementary Table 5). The find-
ings continued to indicate adaptive challenges, beyond the force of 
established reputations, when entering new research terrain.

Turning to frameworks of idea generation, a canonical perspective 
emphasizes an ‘explore versus exploit’ trade-off in creative search. 
Here, exploitation involves lower-risk but potentially lower-return 
search around the edges of one’s current focus, whereas explora-
tion involves higher-risk but potentially higher-return forays into 
more-distant areas6,37,38. Related views indicate an advantage of out-
siders in bringing new perspectives and driving breakthroughs10,11,47. 
Our analyses looked at upper-tail outcomes, but it is possible that the 
value of large pivots lies in even rarer, more extreme, positive outcomes. 
Surprisingly, however, we found that high-pivot research is increasingly 
under-represented at higher impact levels, whereas low-pivot research 
has advantages (Supplementary Fig. 5a,b). For example, studying the 
upper 1% and 0.1% of scientific works by citation impact, papers in 
the lowest decile of pivot size were over-represented by 65% and 91%, 
respectively (P < 0.001 in one-sample t-tests). By contrast, papers 
in the highest pivot size decile were under-represented by 69% and 
73%, respectively (P < 0.001), among the upper 1% and 0.1% of citation 
impact. Rather than indicating a trade-off between risk and reward in 
exploratory search, or outsider advantages, these findings continue to 
indicate a fundamental difficulty of venturing into new areas.

Alternative idea-generation frameworks emphasize the value of spe-
cialized expertise. These frameworks link creative advantages less to 
outsider ideas and more to the accumulated facts, theories and methods 
built in an area by previous scholars47,48. The emphasis on expertise 
and the value of prior knowledge is consistent with Newton’s famous 
statement that “if I have seen further, it is by standing on the shoulders 
of giants”49. Furthermore, the steepening of the pivot penalty with time 
is consistent with increasingly narrow expertise as science progresses 
and knowledge deepens12,50,51. The publication findings (Extended Data 
Fig. 6) showing a monotonic decline in publication success rates as pivot 
size increased, and where the highest-pivot preprints were 35% less 
likely to be published in any journal, suggest the presence of substantive 
issues with these works, consistent with challenges in moving beyond 
one’s established areas of expertise. Related creativity frameworks 
emphasize that new works can be seen as new combinations of existing 
material52–54. Previous studies have shown that high-impact research 
is characterized primarily by highly conventional mixtures of prior 
knowledge but also tending to inject, simultaneously, a small dose of 
atypical combinations that are unusual in previous research8,55. Follow-
ing this literature, we further measured the novelty and conventionality 
of combinations in a given paper and related these measures to pivot 
size and impact (Extended Data Fig. 8 and Supplementary Table 9). 
We found that high-pivot work was associated with a higher propen-
sity for atypical combinations (Extended Data Fig. 8a), a feature also 
reflected in work linking inventors who switch fields to new technol-
ogy combinations14. For example, 31% of the lowest-pivot vigintile of 
papers were characterized by high tail novelty, and 49–58% of papers in 
high-pivot vigintiles had high tail novelty. In other words, when pivoting, 
a researcher not only does something new personally, but also tends to 
introduce previously unseen combinations of knowledge to the broader 
research domain. However, at the same time, high-pivot papers showed 
distinctly low conventionality (Extended Data Fig. 8b), locating a key 
characteristic that such exploratory work tends to miss: a prevalence 
towards well-established mixtures of knowledge. For example, 79% of 
the lowest-pivot papers exhibited mixtures with high median conven-
tionality, whereas only 27–30% of papers in high-pivot vigintiles had 
this characteristic. These findings indicate that researchers, as they 
shift to new areas personally, are equipped for novelty but limited in 
their relevant or conventional expertise, underscoring the difficulty 
researchers may face in venturing beyond their specialized knowledge.

Pivoting in response to external events
The pivot penalty indicates that larger pivots are strongly associated 
with lower impact. However, the research landscape is constantly 
shifting, and researchers must weigh opportunities nearer to and 
further from their current research streams. To further probe pivot-
ing behaviour and the pivot penalty, we considered external events 
that may provoke researchers to pivot. External events can provide 
quasi-experimental settings and help to establish causal interpretations 
of the pivot penalty, and may further inform the tensions regarding 
how researchers navigate a shifting research landscape.

We first considered events that may push researchers away from an 
existing research stream. Specifically, previous research is sometimes 
revealed as incorrect or unreliable, which may encourage researchers 
who had been building on that work to move in new directions. Here 
we focus on paper retractions, which are of growing interest to the 
science community56–58. Using Retraction Watch and the Dimensions 
database, we identified 13,455 retractions over the 1975–2020 period. As 
a treatment group, we considered researchers whose work referenced 
a retracted paper before it was retracted (but who were not authors of 
the retracted study). As a control group, we considered researchers 
who referenced other papers appearing in the same journal and year 
as the retracted paper. We further used coarsened exact matching59 to 
match treated and control authors by their publication rates before 
the retraction year. We then compared pivots and hit rates between 
the treatment and control groups, over the four years before and the 
four years after retraction events, in a difference-in-differences design 
(Fig. 3a and Difference-in-differences).

We found that pivot sizes increased markedly after a retraction event 
(Fig. 3b). Consider first the 164,988 treated researchers who referenced 
a retracted paper at least once before its retraction. The mean pivot 
size for these researchers’ works after the retraction increased by 2.5% 
(P < 0.001) compared with control researchers’ works. We also stud-
ied a smaller treatment group of 18,505 researchers who referenced a 
retracted paper multiple times, indicating more intensive use. For this 
group, pivoting was larger, with mean pivot sizes increasing by 3.7% 
(P < 0.001) after the retraction, compared with the control authors 
(Fig. 3b). Turning to paper impact, treated authors experienced a 0.4% 
decline (P < 0.001) in hit rate after the shock, compared with control 
authors (Fig. 3c). Among treated authors who drew on the retracted 
study multiple times, we saw not only larger pivots (Fig. 3b), but also 
a larger 0.7% decline (P < 0.001) in hit rates after the retraction event 
(Fig. 3c).

Difference-in-differences analyses on a year-by-year basis reinforced 
these findings. Figure 3d shows an increase in pivoting starting in the 
retraction year. Similarly, Fig. 3e shows a sustained decline in hit rates 
after the retraction. Two-stage least-squares regressions, with the 
retraction event as an instrument, further show that these ‘push’ piv-
ots predict substantial declines in impact (Supplementary Table 6). 
Robustness tests using hit rates and citation counts over alternative 
periods, or using alternative definitions of the treated group, showed 
confirmatory results (Supplementary section 2.7.1, Supplementary 
Table 6 and Supplementary Figs. 6 and 7). We further considered a 
smaller case study of replication failures, rather than retractions, draw-
ing on a landmark 2015 study of reproducibility in psychology60, for 
which 100 papers were quasi-randomly chosen for evaluation and 64 
contained non-reproducible results. Deploying the same treatment 
and control method as for paper retractions, this smaller study pro-
vided confirmatory results for pivoting and impact (Supplementary 
Section 2.7.2 and Supplementary Table 7). Altogether, we saw pivoting 
increases and hit-rate declines in response to these external shocks. 
These analyses further confirm the findings of the pivot penalty, now 
in response to external events that push authors into new areas.

Beyond push-type events, researchers may also be pulled into new 
subject areas when new and important research questions emerge. 
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This leads to our second case study, analysing how researchers shifted 
to engage with the COVID-19 pandemic. The advent of the pandemic 
enabled large-scale investigation of individual researcher pivots and 
further showed how science as a whole responds to a new and conse-
quential demands on the research community. Indeed, confronted 
by COVID-19, the world looked to science to understand, manage and 
construct solutions, all in a rapid fashion. Given that few researchers 
were studying coronaviruses or pandemics before 2020, and none were 
studying COVID-19 specifically, the emergence of COVID-19 called on 
researchers across the frontiers of knowledge to consider shifting their 
work to address new, high-demand research questions61–63.

Figure 4 shows that pivoting to address COVID-19 was widespread. 
Although the earliest papers on COVID-19 did not appear until January 
2020 (refs. 64,65), by May 2020, 4.5% of all new scientific papers were 
related to COVID-19 (Fig. 4a). Furthermore, although fields differed in 
the share of their papers that engaged COVID-19, all fields produced at 
least some COVID-19-related research (Fig. 4b and Extended Data Fig. 9). 
Health sciences exhibited the greatest COVID-19 orientation, but the 
social-science fields of economics, education and law also addressed 
COVID-19 intensely, speaking to the pandemic’s socio-economic chal-
lenges66,67. Furthermore, studying each field that had at least 20 COVID-
19 papers, mean pivot sizes were larger for COVID-19 papers than for 

other papers in that field (Fig. 4d; mean difference positive for 100% 
of fields, t-test significant at P < 0.05 for 97% of fields). Figure 4c also 
tracks a cohort of scientists across the body of their work, compar-
ing authors who wrote a COVID-19 paper in 2020 with a control set 
of authors who did not (Supplementary section S2.8). We found that 
pivot size presented a clear jump for COVID-19-related work, for which 
COVID-19 authors pivoted to an unusual degree compared with their 
own publication history (P < 0.001 in t-tests of means), their non-COVID 
2020 papers (P < 0.001) and the control authors (P < 0.001). In sum, 
unusually large individual pivots were a widespread phenomenon as 
scientists sought to address COVID-19.

We next turned to impact. Given that 2020 papers have had less 
chance to receive citations68, we examined journal placement, for 
which each journal was assigned the historical hit rate of its publica-
tions within its field and year (Supplementary section 2.3). Figure 4e 
considers papers published in 2020, separating them into 82,900 
COVID-19 papers and 2.63 million non-COVID papers. We found a pre-
mium associated with COVID-19 papers, as reflected by the upward 
shift in journal placement, consistent with the extreme interest in 
the pandemic. Yet the negative relationship between pivoting and 
impact persisted: comparing the highest-pivot and lowest-pivot bins, 
COVID-19 and non-COVID-19 papers had declines in hit rate of 61% and 
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Fig. 3 | Pivots and retraction events. a, This difference-in-differences analysis 
compares treated scientists who directly cite a paper before its retraction with 
control scientists who cited other papers in the same journal and year as the 
retracted paper, but not the retracted paper. There are 164,988 treated authors 
who cited a retracted paper at least once (18,505 treated authors who cited  
it at least twice) before its retraction but are not themselves authors of the 
retracted papers. Pivot size and impact of papers from these treated scientists 
is compared with papers from equal numbers of matched control scientists 
before and after the year of retraction. b, Pivot size significantly increases  
for treated scientists relative to control scientists after the retraction 
(0.025 ± 0.001 s.e. pivot-size increase, P < 0.0001, regression, n = 5.82 million 
author-by-paper observations). The effect is larger when focusing on scientists 
who cited the retracted paper at least twice (0.037 ± 0.001 s.e. pivot-size 

increase, P < 0.0001, regression, n = 2.96 million author-by-paper 
observations). c, Hit rates fall for treated scientists after retraction 
(−0.004 ± 0.001, P < 0.0001, n = 5.82 million), and again the effect is stronger 
for those citing the retracted paper at least twice (−0.007 ± 0.001, P < 0.0001, 
n = 2.96 million). d,e, Year-by-year analysis comparing treated and control 
authors further shows that the increase in pivot size is statistically significant 
(P < 0.001) starting immediately in the retraction year (d) and the decrease in 
hit rate becomes statistically significant (P < 0.05) starting the year after the 
retraction (e). In b–e, bars and markers represent the difference-in-differences 
regression coefficients, and the whiskers show the 95% confidence interval 
derived from the regression standard errors (see Difference-in-differences). 
Fig. 3a, icons adapted from Apple.
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59%, respectively (P < 0.001 in t-tests of means). Thus, scientists who 
ventured further from their previous work to write COVID-19 papers 
were not immune to the pivot penalty; rather, they produced research 
with less impact, on average, relative to low-pivot COVID-19 papers. 
The pivot penalty in COVID-19 papers also appeared net of individual 
fixed effects (Supplementary Fig. 8). Importantly, the pivot penalty 
was sufficiently steep that the COVID-19 impact premium was mostly 
offset by the unusually large pivots associated with COVID-19 research. 
For example, the upper 45% of COVID-19 papers by pivot size had lower 
average journal placement than did non-COVID papers with median 
or smaller pivot size.

In sum, the ‘pull’ nature of COVID-19 presented two extremely strong 
yet contrasting relationships regarding impact. On one hand, this work 
experienced an impact premium, consistent with the value of research-
ing high-demand areas. On the other hand, greater pivot size markedly 
predicted less-impactful work. These findings underscore a central 
tension for individual researchers and the adaptability of science in 
response to external opportunities: working in a high-demand area 
has value, but pivoting leads to penalties that offset it.

Building on the science of science literature, we further considered 
numerous potential moderating factors and forms of heterogene-
ity that may facilitate pivots. These include researcher career stage, 
productivity, project-level team size, the use of new co-authors, and 
funding8,35,42,69 (see Binned scatterplots and Supplementary section 2.9). 
For example, early-career researchers may have greater creative flex-
ibility7,26,47, and larger team size or new co-authors may extend reach33,70. 
When examining impact, however, we found that the pivot penalty 
persisted, regardless of these features (Fig. 4f–j and Supplementary 
Table 5). We further used regression methods to incorporate detailed 
controls for all these potential moderating factors together and found 
that the pivot penalty appears net of all these features (Fig. 4k), high-
lighting the depth and breadth of the adaptive challenge.

Discussion
Science must regularly adapt to new opportunities and challenges. 
The findings in this study, however, highlight difficulties in adapting 
research streams, with implications for individual researchers, research 
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and non-COVID-19 papers in each field in 2020, unusually large pivots have been 
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COVID-19 work. Comparing at the median pivot sizes (dashed lines), the 
COVID-19 impact premium was substantially offset by the pivot penalty, given 
its larger median pivot size. f,g,h, Engaging new collaborators was particularly 

common for COVID-19 researchers, who worked with new collaborators to an 
unusual degree compared with their own previous work, their other 2020 
publications and with control scientists (f). Nonetheless, the pivot penalty 
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co-authors (h). i,j, Higher-pivot work was substantially less likely to acknowledge 
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conditioned the adaptive response of science, in regression analysis they  
did not individually or collectively overcome the fundamental pivot penalty. 
Coronavirus icon adapted from the Noun Project (https://thenounproject.com).
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organizations, and science and society as a whole. At an individual level, 
a researcher must consider whether to continue exploiting a familiar 
research stream or explore opportunities that lie further away. Research 
on creativity reveals the value of exploration, novelty and outsider 
advantages6–11,33–35,37, indicating a risk-versus-reward trade-off when 
researchers venture further from their existing expertise. However, 
other viewpoints emphasize the value of deep expertise, especially 
in drawing on the frameworks, facts and tools built by previous schol-
ars12,47. As Einstein observed: “Knowledge has become vastly more pro-
found in every department of science. But the assimilative power of the 
human intellect is and remains strictly limited. Hence it was inevitable 
that the activity of the individual investigator should be confined to a 
smaller and smaller section”50. Consistent with both Einstein’s obser-
vation and previous studies indicating increasing specialization and 
disadvantages when inventors switch fields12,14, we found that research-
ers face systematic challenges to pivoting their research, and these 
increase with time. This pivot penalty applies to knowledge production 
in both science and technology, generalizes across research subfields 
and extends beyond impact and publication measures to the practi-
cal use and market value of ideas, external to the research domain. 
Our analyses deploy numerous proxies for quality, such as citation 
impact, home-run rates, publication success, novelty, conventional-
ity and applied value, but the intrinsic quality of a paper or patent is a 
multidimensional and open concept.

The pivot penalty also appears in response to external events that 
may push a researcher away from a given area or pull them into a new 
one. The enormous demand for COVID-19-related research attracted 
numerous researchers and provided an impact premium, yet the pivot 
penalty continued to appear strongly among scholars who reached 
further to engage with COVID-19 research. All told, the pivot penalty 
applies to a range of outcomes that are of central interest to research-
ers and research institutions, and it applies in high-stakes contexts for 
society as a whole.

The pivot penalty, and its steepening with time, raises key questions 
for research organizations and research policy. For example, busi-
nesses and other organizations are often displaced by new entrants52,71, 
despite R&D efforts by the incumbents, which often fail to understand 
or embrace new technological opportunities6,38,72. The pivot penalty 
underscores this challenge and points towards tactics such as ‘acqui-
hires’, in which a research organization seeks to hire relevant experts, 
rather than expecting success by pivoting their existing personnel73,74.

More broadly, the pre-positioning of researchers seems to be a funda-
mental constraint on adaptability. In Pasteur’s words, “chance favours 
only the prepared mind”, and without the pre-positioning of relevant 
human capital, the COVID-19 pandemic would probably have been even 
more costly. Portfolio theory suggests diversified investments as a key 
tool to manage risk75, but the pivot penalty indicates that adjustments 
to the research portfolio are governed by substantial inertia76. From this 
perspective, investing explicitly in a diverse set of scientists is crucial 
from a risk-management standpoint. A diverse portfolio of invest-
ments can then have essential roles in advancing human progress in 
ordinary times7,77 and in expanding the capacity to confront emerging  
challenges.

Science and technology present evolving demands from many areas, 
from artificial intelligence and genetic engineering to climate change, 
creating complex issues, risks and urgency. This study shows that pivot-
ing research is difficult, with researchers’ pivots facing a growing impact 
penalty. The pivot penalty not only appears generally across scientific 
fields and patenting domains, but also arises around important events 
in science, including when previous research areas become devalued, 
for example after a paper has been retracted, and when high-demand 
areas emerge, such as the COVID-19 pandemic. Nevertheless, studying 
adaptability in different settings and timescales, including longer-run 
research shifts, are key areas for future work. For example, research-
ers should consider whether to give up in the likely event of a failed 

pivot or instead further develop their expertise in the new area and 
stick to the new path. Exploring such sequential dynamics may help 
us to better understand how to create conditions to enable adaptive 
success. Finally, pivoting to address emerging challenges is not unique 
to science and technology, but may underpin the dynamics of success 
and survival for individuals, companies, regions and governments 
across human society5,72,78–81, indicating that the pivot penalty may be a 
generic property of many social and economic systems, with potential 
applicability in broader domains.
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Methods

Pivot size
We quantified researcher pivots using a cosine-similarity metric 
(Fig. 1a). Specifically, in the sciences, for an author i and a focal paper 
j, we calculated a vector, i

jR , representing the distribution of journals 
referenced by j. Similarly, we counted the frequency in which different 
journals were referenced in i’s previous work, defining a vector Ri. An 
individual’s work includes any paper for which the individual is a listed 
author. The pivot measure, Φi

j, is then defined as 1 minus the cosine of 
these two vectors:

R R
R R

Φ = 1 −
·

. (1)i
j i

j
i

i
j

i

The measure Φi
j therefore took the value 0 if the focal paper drew on 

exactly the same distribution of journals as the author’s previous work, 
and took the value 1 if the focal paper drew entirely on new journals for 
that author. The measure featured in the main text calculates pivoting 
in the focal paper compared with the past three years of the author’s 
work. We also calculated our measure by using all previous work of a 
given author, arriving at similar conclusions (Supplementary sec-
tion 2.2.1 and Extended Data Fig. 10). Finally, we considered the pivot 
measure based on the fields of the cited references, rather than their 
journals, and again found confirmatory results for our main analyses 
using this alternative measure (Supplementary section 2.2.1 and Sup-
plementary Fig. 3).

For patents, given that journal information was not available, we used 
technological field codes to define the reference vectors. Specifically, 
we used the distribution of Cooperative Patent Classification technol-
ogy field codes among a patent’s cited references to build the reference 
vectors and cosine similarity metric in equation (1). These technology 
codes are hierarchical, providing alternative levels of granularity in 
defining technology areas. Our main analyses used the detailed level-4 
technological classification (comprising 9,987 distinct technology 
areas). We further examined all possible classification levels in the Sup-
plementary Information, considering pivoting from the broadest level-1 
classification level (9 sections) to the most detailed level-5 classification 
(210,347 subgroups). Intuitively, the pivot distribution for inventors 
shifted left when using broader technology categories (Extended Data 
Fig. 4), so that inventors pivoted less from their broadest technology 
areas (the section or section-class level). Regardless of the technological 
classification used, the pivot penalty was robust (Supplementary Fig. 1).

Outcome measures
We used citation-based and non-citation-based outcome measures. Our 
citation-based measures normalized outcomes for each work by its field 
and year. For papers, the primary citation measure was an indicator for 
being in the upper fifth percentile among all articles published in the 
same year and the same field. The field designation was the L1 field of 
research designation, for which there are 154 fields in the Dimensions 
database. For patents, we similarly used an indicator for being in the 
upper fifth percentile of citations received among all patents from the 
same year and technology area, using the Cooperative Patent Classifica-
tion class-level designation, for which there are 128 technology areas.

As presented in the Supplementary Information, we considered 
numerous alternative citation-based measures. These include 
smoother (non-binary) outcomes, in which a paper’s citation count is 
normalized by the mean citation counts to articles in the same field and 
publication year. We further considered the outcome as the percentile 
rank of the paper’s citations among all articles published in the same 
field and year. To examine time frames, we further considered citation 
counts over two, five and ten-year forward citation windows. Finally, 
we considered alternative binary indicators to further emphasize the 
locus of the very highest-income work, defining a ‘hit’ paper as being 

alternatively in the upper 10, 5, 1, 0.5 or 0.1% percent of all publications 
in a given field and year. Supplementary section 2.3.2 provides further 
details and associated robustness tests for all these alternatives.

Among the non-citation-based measures, we considered numerous 
other outcomes. These included measures of publication success, 
for which we considered preprints from 2015 to 2018 and examined 
whether they were successfully published over an ensuing five-year 
window. Drawing on the Reliance on Science database43, we examined 
whether a paper appeared as a prior art reference in a future patent, 
providing an indicator for the usefulness of the idea beyond science3. 
We considered journal placement for recent work. For patents, we also 
used stock-market event study data44, providing a market-value meas-
ure for patents in publicly traded firms. Supplementary section 2.3.3 
provides further details and results for all these outcomes.

Binned scatterplots
To reveal potentially nonlinear relationships between pivot size and 
outcome variables, we use binned scatterplots82. In Fig. 2a, papers 
are ordered by average pivot size along the x axis and binned into 20 
evenly sized groups. Each marker is placed at the mean (x,y) value within 
each group. Binned scatterplots of raw data are further presented 
in Figs. 2c,e,f and 4e,g–j, and Extended Data Figs. 2, 3, 5–8 and 10b.  
Student’s t-tests are used to test mean differences from baseline 
rates (one sample t-tests) or when comparing outcomes between 
high and low pivot-size vigintiles (two sample t-tests) in raw data. For 
simplicity, we report P < 0.001, but note that with observation counts 
in the millions, these mean tests tend to reject common means with  
extremely high t-statistics and extremely low P values.

Figure 4e uses the binned-scatterplot approach for papers in  
the year 2020, splitting them into articles related or unrelated to  
COVID-19. Similarly, Fig. 4g–j presents binned scatterplots, further 
splitting the 2020 papers according to the noted criteria (team size, 
use of new collaborators and funding). In Fig. 4k, we account for  
multivariate controls. We consider regression of the form

α f εImpact = + (Pivot_size ) + + ,i i i iθX

where Xi is a vector of control variables with associated vector of coef-
ficients Θ; f(Pivot_sizei) allows for a nonlinear relationship between 
the outcome and pivot size; and εi is the error term. Control variables 
include fixed effects for average previous impact, author age, team size, 
number of new collaborators and an indicator variable for funding. In 
practice, we ran two regressions to residualize pivot size and impact, 
net of the controls, following the Frisch–Waugh–Lovell theorem.  
Figure 4k presents the binned scatterplot for the residualized measures.

Regressions with individual fixed effects
The panel regression with individual fixed effects in general takes the 
form:

θXμ γ f εImpact = + + (Pivot_size ) + + ,ipt i t ipt ipt ipt

where i indicates a given researcher, p indicates a given work (paper or 
patent) and t indexes the year (publication year for a paper and applica-
tion year for a patent); μi are individual-fixed effects, γt are time-fixed 
effects and Xipt is a vector of other potential control variables. Obser-
vations are at the paper-by-researcher level. As before, we allowed for 
potentially nonlinear relationships between pivot size and impact, and 
hence took a non-parametric approach. Specifically for Extended Data 
Fig. 1, we generated bins of pivot size and included indicator dummies 
for a work appearing in the relevant bin. Given the very large number of 
individual fixed effects, we ran these models in Stata using the reghdfe 
command suite83. Standard errors are clustered at the researcher level. 
The statistical significance of different pivot-size bin coefficients was 
calculated using t-tests. For simplicity, we report P < 0.001, but note that 
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with observation counts in the millions, these tests present extremely 
high t-statistics and extremely low P values.

Difference-in-differences
When studying external shocks, we continued to use the researcher 
panel data model with individual-fixed effects. We implemented stand-
ard difference-in-differences methods, comparing treated research-
ers with control researchers, before and after the external event. The 
regressions take the form:

μ γ β γ εPivot_size = + + Treat_Post + Post +ipt i t ipt ipt ipt

μ γ β γ εImpact = + + Treat_Post + Post + ,ipt i t ipt ipt ipt

where Postipt is an indicator for the period after the shock. The indicator 
for being in the treatment group is absorbed with an individual’s fixed 
effect and so does not appear separately in the regression. Treat_Postipt 
is an indicator for being in the treatment group after the shock and 
provides the reported difference-in-differences estimate in Fig. 3. 
The implications of the external event for pivot size and the reduced 
form results for impact are shown in Fig. 3b,c. We also present ‘event 
study’-style difference-in-differences plots in Fig. 3d,e, showing how 
the treatment effect evolved before and after the retraction date. Here 
we replace the Treat_Postipt variable and Postipt variable with a series of 
relative year indicators and their interactions with treatment status.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The de-identified data necessary to reproduce the main plots and 
statistical analyses (including individual-level pivot size and other 
key variables) are freely available. Patent data are publicly avail-
able at https://patentsview.org/download/data-download-tables. 
Paper-retractions data are publicly available at https://www.
crossref.org/categories/retractions/. NSF grant data are pub-
licly available at https://www.nsf.gov/awardsearch/. NIH grant 
data are publicly available at https://reporter.nih.gov/. Reliance 

on Science data are publicly available at https://doi.org/10.5281/
zenodo.5803985 (ref. 84). KPSS patent-value data are publicly available 
at https://github.com/KPSS2017/ Technological-Innovation-Resource- 
Allocation-and-Growth-Extended-Data. Those interested in raw 
Dimensions data should contact Digital Science directly. Data are 
available through the main project folder at https://doi.org/10.6084/
m9.figshare.28074941 (ref. 85). All other data are available from the 
corresponding authors upon reasonable request. Source data are pro-
vided with this paper.

Code availability
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Extended Data Fig. 1 | The pivot penalty in science and invention over time, 
within individual researchers. Using a 5% subsample of paper authors and  
all patent inventors, we divide the data into two periods, 1986–2000 (n = 5.7 
million author-paper pairs, n = 568 thousand inventor-patent pairs) and 2001–
2015 (n = 23.2 million author-paper pairs, n = 2.0 million inventor-patent pairs). 
In each period, we run regressions with individual fixed effects. (a-d) The 
relationship between hit rates and pivot size is estimated non-parametrically, 
with fixed effects for different ranges of pivot size. The figures present the 
coefficient for each pivot size group, with indicated 95% confidence intervals. 
The slope of the pivot penalty is increasing over time when looking within 
individual researchers. For papers, the recent period (b) shows a monotonic 
decrease in hit rate with pivot size, within the body of work of individual 
researchers (confidence intervals are too small to be seen). The earlier period 
(a) similarly shows a monotonic decrease in hit rate with pivot size, but the 
slope of the relationship is shallower. For patents, the recent period (d) shows  
a monotonic decrease in hit rate with pivot size, within the body of work of 
individual researchers. The earlier period (c) has noisier estimates, with a 
flatter relationship to pivot size and potential non-monotonicity, but where 
high pivots face large impact penalties. Overall, we see an increasingly steep 
pivot penalty with time.
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Extended Data Fig. 2 | The pivot penalty over alternative time horizons.  
The baseline pivot penalty (Fig. 2a) uses the hit rate measure, normalizing 
impact by field and publication year, providing one means for addressing 
different time horizons for citations from different publication years. 
Alternatively, for the same data (n = 25.8 million papers published from  
1970–2015), one can count and normalize citations received over a fixed 
window of time after the publication year. (b-d) Hit rates are computed using 
citations received by each paper over, alternatively, (b) 2 year, (c) 5 year, and  
(d) 10 year forward windows. The pivot penalty is robust using all of these 
alternatives.



Extended Data Fig. 3 | The pivot penalty with smoother citation measures. 
In addition to binary measures of impact, one can consider more continuous 
measures using the same data (n = 25.8 million published from 1970–2015).  
In (a) we normalize each paper’s citation count as a ratio to the mean citations 
for papers in that field and publication year. Citations are approximately 30% 
above the field mean for low pivot papers on average and 55% below the field 
mean for the highest pivot papers on average. In (b) we normalize each paper’s 
citations by its percentile in the citation distribution for all papers published in 
the same field and year. The pivot penalty is also robust to this measure of 
impact.
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Extended Data Fig. 4 | Quantifying pivot size using various levels of patent 
technology classification. For patents granted from 1975–2015, the pivot size 
distribution is bimodal, with more weight on pivots of size zero and one (n = 3.3 
million inventor-by-patent observations). The average pivot size increases  
as the definition of technology class used to calculate pivoting narrows.  

The available levels of technology class are: (a) 9 sections (e.g., “B”), (b)  
128 classes (e.g., “B29”), (c) 662 subclasses (e.g., “B29C”), (d) 9,987 groups  
(e.g., “B29C45”), and (e) 210,347 subgroups (e.g., “B29C45/64”). The main 
analysis in Figs. 1 and 2 use level-4 groups to define pivot size.



Extended Data Fig. 5 | Patent references to papers. The probability that an 
academic paper is referenced by at least one patent declines at larger pivot 
sizes. The data considers 37 million papers published from 1970–2019. Panel (a) 
considers raw data, with no controls, and indicates non-monotonicity at lower 
pivot sizes. Panel (b) considers the relationship net of level-1 field fixed effects, 
which accounts for the fact that some fields (e.g., astronomy) are far less likely 
to be referenced in patents than others (e.g., nanotechnology). As seen in the 
figure, controlling for field largely eliminates the non-monotonicity. Comparing 
the highest and lowest pivot size bins in (b), the probability of being cited in a 
patented invention declines by 43% (p < .001 in two-sample t-test of means).
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Extended Data Fig. 6 | Successful publication. This figure analyzes all 1.07 
million preprints released from 2015–2018 on preprint databases such as arXiv 
and SSRN. For each preprint, we examine whether it has been published within 
a five-year window from its preprint date. Virtually all low pivot size papers  
are published. But publication success declines smoothly with pivot size. 
Comparing the highest and lower pivot size bins, the publication success rate 
declines by 35% (p < .001 in two-sample t-test of means). The monotonic decline 
in publication success provides a further dimension of the pivot penalty. See 
Section S2.3.3 for further discussion.



Extended Data Fig. 7 | Patent market value. The estimated market value of 
patents is decreasing in average pivot size. Market value is estimated using 
changes in stock prices around the announcement of patent grants for public 
companies. The sample is 802,599 patents published between 1980 and 2015 
that were granted to public corporations. Market valuations are as calculated 
in44. Comparing the highest and lowest pivot size bins, market value declines  
by 29% (p < .001 in two-sample t-test of means).
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Extended Data Fig. 8 | Novelty, conventionality and pivot size. The 
probability that a paper is characterized by (a) high tail novelty or (b) high 
median conventionality in relation to pivot size. Measures are calculated using 
combinations of references in new academic papers, examining 20.8 million 
papers over the 1970–2015 period8. Overall, novelty is increasing with pivot size 
while conventionality decreases. A researcher who is pivoting not only does 
something new personally but also tends to combine prior knowledge in a way 
that is unusual in science. At the same time, high pivots are associated with 
distinctly low conventionality, consistent with a weaker grounding in 
conventional domain knowledge.



Extended Data Fig. 9 | COVID share by subfield. This figure reports COVID-19 papers as a fraction of all 2020 publications in specific level-1 fields. Presented 
here are the 20 medical and 20 non-medical level-1 fields that have the highest fraction of COVID papers.
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Extended Data Fig. 10 | Quantifying pivot size using an author’s full 
publication record. In the main text, we measure pivot size comparing the 
author’s focal paper with that author’s prior three years of work. Here we 
examine pivot size using the entire history of that author’s work (n = 8.43 
million author-paper pairs). (a) The large shift in pivot size for COVID papers is 
evident when pivot size is measured by comparing 2020 papers to all past work. 
This shift is comparable to Fig. 1b, where pivot size is measured using only 
papers published in the prior three years. (b) The negative relationship between 
pivot size and impact is similar in slope when using the full career pivot metric 
here or the 3-year metric as shown in Fig. 4e.
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