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S1 Data description 

S1.1 Publications data 

Our primary dataset for scientific publications is based on Dimensions, a data product from 

Digital Science1,2. Dimensions is one of the world’s largest citation databases, including 

scientific publications from journals, conference proceedings, books and chapters, and preprint 

servers. For each paper we obtain its title, publishing venue, list of authors, affiliation(s), 

publication date, fields of study, references, number of citations received, and acknowledged 

funding information.  We collect all publications in the Dimensions database through December 

31, 2020, and our analysis covers publications over the 1970-2020 period. 

 

Our baseline dataset is restricted to the 45.2 million papers that include at least five references to 

prior work. We do this for two reasons. First, pivot size — our primary variable of interest — 

uses reference information as a proxy of a paper’s knowledge sources. Second, this restriction 

helps filter out non-research articles and incomplete records. A manual check of a random 

sample of excluded papers (those with 4 or less references to prior work) shows that many are 

commentary or editorial pieces that cite very few references, while some are due to the lack of 

reference data sharing between Dimensions and some publishers.  As robustness checks, we also 

consider further analyses where reference counts exceed successively higher thresholds, 

including at least 15, 20, 30 or 50 references to prior work (see SI Section S2).   

 

Recent studies have shown that Dimensions covers most reference-citation linkages as recorded 

in other bibliographic databases, such as the Web of Science or Scopus3. For publications with 

preprint linkages, we further combine the published and preprint article into a single record and 

count citations as the sum of citations to the combined record. For most journal articles (99.2%) 

and all preprint publications, we have information on its publishing venue (i.e., specific journal 

or preprint series). 
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Author name disambiguation An important step in science of science studies is author name 

disambiguation. Dimensions has developed a systematic algorithm using both internal 

information derived from papers (e.g., affiliation and citations) as well as external author profile 

information (e.g., ORCID). Within our sample, 84.6% of records in the data are assigned author 

IDs.  Analyses are restricted to papers with at least one disambiguated author.  We further hand 

check random samples of papers and author IDs against public CVs, which indicates high quality 

matching of authors and their papers (see SI Section S3). 

 

Affiliation disambiguation Dimensions has also mapped raw affiliation strings to the Global 

Research Identifier Database (GRID), which provides unique identifiers for different research 

organizations, offering unique affiliation IDs to 75.1% of records in the data. 

 

Field classification Dimensions also implements classification approaches to assign fields under 

the FOR (field of research), a two-level field classification system (22 level-0 fields and 154 

level-1 fields). Across all of Dimensions, 94.3% and 88.6% of papers have at least one level-0 

and level-1 field, respectively. The median number of level-0 (L0) fields per paper is 1 and the 

median number of level-1 (L1) fields per paper is 1. In analyses where we calculate field-specific 

means, we associate papers to each of the fields they belong to, when the paper has multiple 

fields.  

 

Retracted publications For the retraction natural experiment, we start with the complete list of 

retracted papers produced by the Retraction Watch Database and CrossRef.  This retractions data 

has become open source and available through CrossRef4.  We merge retracted papers based on 

DOI to the Dimensions database (through 2020).  This merge identifies 13,455 retracted papers 

in the Dimensions database over the 1975-2020 period.  See Methods below for the construction 

of the treatment and control groups and further details. 

 

Replication failures As a substantially smaller case study, we use the landmark replication 

analysis in 2015, “Estimating the reproducibility of psychological science” 5.  Specifically, we 

take all publications in Dimensions that appear in three journals (Psychological Science, Journal 

of Personality and Social Psychology, and Journal of Experimental Psychology:  Learning, 
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Memory, and Cognition) in 2008, which were the source of the 100 publications that were quasi-

randomly selected and analyzed in the replication study.  Of the tested papers, 64 had results that 

failed to replicate.  See Methods below for the construction of the treatment and control groups 

and further details.   

 

COVID-19 related publications We constructed a set of COVID-19 related publications using a 

keyword search method and following previous work6 by searching for papers published in 2020 

with the following query: 

 

"2019-nCoV" OR "COVID-19" OR “SARS-CoV-2” OR "HCoV-2019" OR "hcov" OR "NCOVID-

19" OR "severe acute respiratory syndrome coronavirus 2" OR "severe acute respiratory 

syndrome corona virus 2" OR (("coronavirus" OR "corona virus") AND (Wuhan OR China OR 

novel)) 

 

Since our primary interest is papers closely related to the COVID-19 pandemic, we limit the 

search to the title and abstract, yielding 95.5 thousand COVID-related papers.  

S1.2 USPTO patents data 

We further leverage USPTO patents to test the pivot penalty in technological areas. Our data comes 

from bulk data services provided by PatentsView (retrieved in March 2021), a patent data platform 

supported by USPTO. The original data covers 6.9 million patents granted by USPTO since 1976, 

with detailed information on the patent’s title, date, CPC classification codes, patent references, 

and (disambiguated) inventors.  

For our analysis, we focus on utility patents. Given that we are primarily interested in career-level 

pivot behaviors, we exclude all patent continuations (by definition, they will be highly similar to 

previous patents by the same inventor). To this end, we further retrieve the application numbers of 

all patents in our dataset and link them with continuation information from the Patent Examination 

Research Dataset (PatEx). We then remove all patents that are associated with at least one “parent” 

patent in continuation records. Consistent with our selection on publication data (S1.1), we further 
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focus on patents with at least 5 patent references. This results in a subset of 3.7 million patents, 

and 3.0 million patents of over our main analysis period, 1980-2015.  

Inventor name disambiguation PatentsView has also developed an inventor name disambiguation 

algorithm, which assigns a unique id for each inventor record in the database. More details about 

the algorithm are available at https://github.com/PatentsView/PatentsView-Disambiguation. We 

use this information to construct inventor career trajectories. See Methods below. 

Technology classification We use the Cooperative Patent Classification (CPC) to determine the 

technology class of each patent. The CPC system applies a five-level hierarchical system: (a) 9 

sections (e.g., B), (b) 128 classes (e.g., B29), (c) 662 subclasses (e.g., B29C), (d) 9,987 groups 

(e.g., B29C45), and (e) 210,347 subgroups (e.g., B29C45/64). The subset analyzed in Figs. 1 and 

2 is associated with 6.0 classification codes per patent on average. For calculation of cosine 

similarity and pivot size, we pool together the classification codes associated with each reference. 

S1.3 Scientific grant data 

We also use scientific grant data from Dimensions. Dimensions collects over 5 million granted 

projects from over 600 funders across the world. For each project, the data includes the project 

title, investigators, funder, funding amount, internal project number from the funder, and project 

duration. Name disambiguation for the investigators and publication authors shares the same ID 

system in Dimensions, allowing us to examine the funding situation of each author. Here we focus 

on all grants with end dates no earlier than 2019 to approximate the set of recently funded 

investigators/authors. In addition, Dimensions combines funding and publication records as well 

as text mining from acknowledgement statements to infer whether a paper is supported by a funder 

or a specific grant.  

S1.4 Patent references to science 

Going beyond paper-to-paper citations, we measure the patent impact of scientific papers using 

Reliance on Science data10 (v34). The original linkage contains 40.4 million citation pairs from 

worldwide patent documents to scientific papers indexed in the Microsoft Academic Graph 

(MAG). In our analysis, we focused on USPTO patents. We further merge the cited papers to the 

https://github.com/PatentsView/PatentsView-Disambiguation
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Dimensions database using DOI. Together, these steps yield 4.1 million Dimensions papers with 

at least one USPTO patent citation. 

S1.5 Market value of patents 

Data for the market value of patents is from Kogan et al. (2017)7.  Their study considers stock 

price reactions on the day patents are issued to the relevant firm.  Using an event study design, 

they produce a market valuation for each patent. This method, and hence the data, only applies to 

patents from publicly traded firms.  Market valuations and pivot size are available for 802 thousand 

patents issued over the 1980-2015 period. 

 

S2 Methods 

S2.1 Individual careers 

Our analyses focus on the pivoting behavior of researchers and resulting impact.  To measure 

pivoting behavior, we need a stream of work by that researcher so that a given work can be 

compared to the prior work of that researcher. We therefore focus on researchers who have at least 

5 works. Any papers for which a researcher is an author, including coauthored papers, are 

considered part of that person’s stream of work. Similarly, coinvented patents are attached to each 

coinventor.  For papers, the resulting dataset includes 37 million papers over the 1970-2020 period.  

For patents, where inventors tend to be less prolific and having at least 5 patents is not as common, 

the resulting dataset includes 1.8 million patents over the 1980-2015 period. For both papers and 

patents, we use the name disambiguated identifiers provided by our data sets (see above). 

 

Given the body of work assigned to each researcher, we further calculate several relevant metrics. 

These include career age, which is measured as the number of years since the author’s first 

publication year (or, for inventors, the number of years since the first patent application year).  We 

further calculate the citation impact of each researcher’s individual works, their modal field of 

research, their number of publications, and their typical pivot size.  These characteristics can be 

further used to define control groups when studying how researchers respond to external events. 
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S2.2 Pivot size 

We calculate pivot size as described in detail in the main text.  Figure 1 presents the pivot size 

distributions for papers (Fig. 1b) and patents (Fig. 1c).  Here we consider additional assessments 

of pivoting behavior and pivot size distributions, using alternative classifications in the data, and 

further demonstrate the robustness of the pivot penalty to alternative approaches. 

 

S2.2.1 Papers 

For papers, our main analyses use the prior three years of publications by a given author to 

calculate pivot sizes for any given paper. One can alternatively use all the prior works of the author, 

at the given point in the career, to calculate pivot sizes. Extended Data Fig. 10 presents the pivot 

size distribution using the full list of prior work and shows that pivot size distribution remains 

similar.  Further, the pivot penalty continues to appear (Extended Data Fig. 10).  As an additional 

robustness test, these further analyses also examine COVID-19 research and continue to find 

similar findings as when using the three-year window.  

 

An alternative and substantially coarser way to calculate pivots for papers is to use fields instead 

of journals. Specifically, one can code a paper’s references not by their journal but by their L1 

field code and then rebuild the pivot measure for each paper on this basis.  This is a much coarser 

approach, in the sense that there are 154 L1 fields, while there are 40,225 journals.  In terms of the 

number of fields, coding papers in this coarser way is akin to the level-two CPC coding variant for 

patents (see below).  

 

Fig. S3 compares pivot size as measured using L1 field codes with pivot size when measured using 

journals.  We see a monotonic positive relationship.  Note also that, using the field codes, the pivot 

measure is compressed to lower values, with a pivot size above 0.5 accounting for only 5 percent 

of papers.  This leftward shift in the pivot size distribution is natural when using a coarser 

knowledge coding, as shifts in referenced fields are bigger and rarer.  Fig. S3 further shows that 

we continue to see a pivot penalty when using L1-field codes to define pivot sizes, with the pivot 

measure compressed to lower pivot sizes.  The main text features the journal-based analysis, both 

because it shows greater range in pivoting and because of known concerns about the quality of 
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field encodings in paper data (Bornmann 2018), which may lead to noise and attenuation when 

relying on the field encodings.  

 

Table S10 provides an illustrative example of pivot size for three authors with different pivot sizes.  

To provide a common context, we consider focal papers related to COVID-19, all published in 

2020. We present the focal COVID-19 paper and its title, together with three papers for each author 

from the prior three years. The examples consider a researcher with a large pivot (0.95), a 

researcher with a middle-sized pivot (0.51) and a researcher with a relatively small pivot (0.18). 

 

S2.2.2 Patents 

For patents, one can draw on the hierarchical nature of CPC technology classification to re-

examine pivot sizes and the robustness of the pivot penalty.  Extended Data Fig. 4 shows that, as 

one shifts from the narrowest technology classification (level-5, with 210,347 subgroups) to the 

broadest (level-1, with 9 sections), the pivot distribution for inventors shifts leftward.  As with 

papers, coarser field classifications naturally result in leftward shifts in the pivot size distribution.  

Nonetheless, pivoting behavior remains highly variant. Fig. S1 further shows that, regardless of 

the technological classification used, the pivot penalty is robust in all cases. Thus, for the papers 

and patents, the fundamental finding of a pivot penalty endures regardless of numerous alternative 

coding schemes for areas of knowledge.  

 

A distinction for patents, compared to papers, is that the pivot size distribution appears bimodal, 

with a tendency towards very small pivots and very large pivots, and indeed this feature endures 

using broad or narrow field encodings (Extended Data Fig. 4). The high frequency of large pivots 

(near 1) is due in part to cases where there are relatively few references in prior art from a given 

inventor.  This could occur either because the inventor has few prior patents or because that 

inventor’s prior patents make few prior art references. To further investigate this dimension, Fig. 

S4a presents the patent pivot size distribution when we restrict the sample to inventors with at least 

10 patents in the prior three years.  Fig. S4b further presents the patent pivot size distribution when 

we restrict the sample to inventors with exactly one patent in the prior three years but then separate 

out cases where that patent has at least 100 prior art references.  We see that in both cases the 

presence of very high pivot patents declines substantially. That said, the bimodal nature of the 
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patent relationship still remains and appears robust to these reference count considerations. A 

substantive reason for the bimodal behavior of inventors may be that inventors in patenting 

contexts are often assigned to their research directions. For example, based on the corporate 

priorities, inventor R&D groups may be asked to engage new areas (high pivots) or double down 

on existing areas (low pivots) following the direction of R&D management and the interests of the 

firm.   

 

S2.2.3 Manual checks for high pivots 

We studied high pivots to see if very large pivots may be related to any name disambiguation 

issues.  Specifically, we took a random sample of 10 authors who produce a paper with a pivot 

score >0.95 in the year 2020.  We then took this very high pivot paper (10 papers) as well as all 

other papers in the database that were associated with that author and published over the prior three 

years (totaling another 148 papers).  We then hand checked every paper associated with these 

authors against the authors’ CVs, personal websites, Google Scholar profile, PubMed page, or 

Scopus page (depending on the source available for a given author).  The large majority of the 158 

papers, including all 10 very high pivot papers, could be verified as matches through the authors’ 

own CVs/websites/Google scholar etc. profiles.  The very high success rate gives further 

confidence that name disambiguation is sufficiently accurate.  See Section S3.1 below for further 

analysis and detail.  

S2.3 Impact measures 

S2.3.1 Main citation based measure 

Our primary measure of paper impact is an indicator for whether an article is in the 95th percentile 

or higher of citations compared to articles published in the same year with the same L1 fields. 

Similarly, we define a measure of patent impact by looking at whether a patent is in the 95th 

percentile or higher of citations compared to patents in the same year with the same primary class.  

This approach provides a binary outcome variable, where 1 indicates a high impact work and where 

the mean hit rate is 5% by construction in any given field and year in the data.  As such, this 

method normalizes the outcome across different fields and across different periods of observation.  
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S2.3.2 Alternative citation based measures 

Our main analyses focus on a binary indicator for being especially high impact, with two primary 

motivations.  First, scientific and technical progress may hinge on key, high impact ideas, and 

second, theories of creative search (such as explore vs. exploit frameworks, or emphases on 

creative outsiders) often orient on the production of high-impact ideas. When looking within 

individual careers, however, high impact work can be rare, and many individual researchers do not 

produce high impact works.  Thus, smoother outcome measures of impact may be useful especially 

when looking within individual careers, as well as for providing robustness checks on broader 

findings.  We therefore consider numerous additional citation measures, which can be used to 

further characterize results. 

 

Mean citations.  As a smoother measure of the citation impact, and following prior literature, we 

take a paper’s citation count and normalize it, dividing by the mean citation counts for papers in 

that field and with the same publication year8,9.  This approach allows for a more continuous 

measure of impact while also continuing to normalize for citation differences across fields and 

time.  Extended Data Fig. 3a shows that the pivot penalty remains large using this more continuous 

measure.  Specifically, the citation impact of the lowest pivot papers tends to be approximately 

30% above the field-year mean while the citation impact of the highest pivot papers tends to be 

approximately 55% below the field-year mean.   

 

Mean percentile citations.  Another approach to measuring impact converts each paper to its 

percentile of citations received among all papers published in that field and year.  This provides 

another, smoother version of citation impact compared to the binary measure, while also limiting 

the influence of any outliers.  Extended Data Fig. 3b shows that the pivot penalty continues to 

appear and remain substantial using this alternative measure.  Specifically, the lowest pivot papers 

on average are in the 58th percentile of citations received compared to other papers in the field and 

year, while the highest pivot papers on average are in the 36th percentile. 

 

Time frame.  Comparing works published in the same field and year acts to normalize the measure 

of citation impact.  That is, citation impact is always being compared among papers in the same 

field and with the same horizon for citation (between the publication year and the present). 
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However, one can also use a fixed period after publication as an additional way to normalize the 

time frame. We recompute citations received by each paper using, alternatively, two-year, five-

year, and ten-year forward windows. Extended Data Fig. 2 shows that the pivot penalty is similar 

regardless of these alternative citation windows. 

 

Alternative binary indicators.  Within the class of binary indicators, which are useful to emphasize 

the locus of the highest-impact work, one can consider alternative percentile thresholds. The main 

analyses consider papers with citations received in the 95th percentile or above.  Alternatively, we 

consider indicators for work in the upper 90th, 95th, 99th, 99.5th and 99.9th percentile of citations 

received. Fig. S5 shows that the pivot penalty remains severe at these different impact thresholds, 

and indeed high-pivot work is even less likely to achieve the higher impact thresholds compared 

to low pivot work, as discussed in the main text. 

 

S2.3.3 Non-citation based measures 

Journal placement.  When examining research in 2020 (including COVID-19 research) there has 

been less opportunity for works to accumulate citations.  We therefore use journal placement as 

an alternative. For the journal impact measure, we mirror the baseline citation measure by 

calculating the share of papers in a given journal that reach the 95th percentile of citations (within 

its field and year), averaged between 2000-2019. This metric is intended to infer both the 

likelihood of becoming a hit paper and the authors’ perception of a paper’s impact and contribution 

based on journal placement. 

 

Publication success. Our datasets consider published papers and granted patents, following 

standard practice in analyzing science and innovation outcomes. However, for recent years in 

science, we can also take an additional step by using preprints and asking whether preprints ever 

become published. Specifically, we examine all 1.07 million preprints released from 2015-2018 

on preprint databases such as arXiv and SSRN. We define an indicator variable that is equal to 1 

if the working paper becomes a published article in our data.   

 

Extended Data Fig. 6 shows that higher pivot sizes are associated with a large decline in the 

probability of being published. There is a smooth decline in publication propensity with pivot 
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size, where virtually all of the lowest-pivot size working papers become published while only 

two-thirds of the highest-pivot papers are published (within five years). Thus, not only do higher 

pivots exhibit declining impact, conditional on publishing, high pivots are also harder to publish.  

The impact challenges of high pivot appear only stronger from this additional viewpoint.  For 

example, taking Pr[Hit] = Pr⁡[Hit|Published] × Pr[Published] (where we note that 

unpublished papers cannot be hits), the highest-pivot papers would see unconditional hit rates 

that are approximately two-thirds lower than the (already low) hit rate conditional on 

successfully publishing. This method of observing preprints that fail to publish opens new 

avenues of insight in the science of science that may be used in other studies.   

 

Patent usage of science. As an outcome measure for a given scientific work, we further consider 

whether the article is referenced as prior art in a future patent.  This outcome indicates applied use 

of the scientific ideas, suggesting an important form of impact that occurs beyond the domain of 

science itself 10,11.  For each scientific article, we use a binary indicator where 1 indicates that the 

article is directly referenced in a future patent.  Extended Data Fig. 5 shows that high-pivot papers 

are substantially less likely to be referenced in a future patent. The pivot penalty is not monotonic 

in this case, with low pivot sizes associated with less applied use. However, this outcome measure 

is not normalized by scientific field (unlike the citation impact measure in science), and there is 

substantial heterogeneity across scientific fields in the frequency of direct patent citations11.  For 

example, nanotechnology papers are far more likely to be cited in patents than astrophysics papers 

are.  To absorb field heterogeneity, we further consider patent citations to science in a regression 

with fixed effects for the paper’s L1 research field.  The result, shown in Extended Data Fig. 5, 

indicates that the non-monotonicity at low pivot sizes largely disappears with this simple field 

control.  

 

Market value.  As an outcome measure for a given patent, we consider the market value measure7, 

which assigns to a patent a market value based on the stock price response of the business on the 

day of the patent’s issuance.  This measure is only available for patents that are assigned to publicly 

held firms.  Extended Data Fig. 7 shows that higher-pivot patents have substantially lower market 

value. 
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S2.4 Tail novelty and median conventionality 

Following the existing literature, we measure the novelty and conventionality of academic papers 

by considering the combinations of existing ideas.12 We consider the pairwise combinations of 

journals cited by each paper and compare them to the expected frequency that those combinations 

would appear by chance according to the existing network of citations. Two journals that are 

unlikely to be paired by chance indicate a novel combination, while journals that are more likely 

to be combined indicate a conventional combination. Specifically, a journal combination can be 

assigned a z-score, comparing the observed and expected frequency of that journal pairing in 

science and normalizing by its standard deviation.  Each paper has a distribution of z-scores across 

all the journal pairs it references. Following prior literature, we denote a “high tail novelty” paper 

if its 10th percentile z-score is below 0, and we denote a “high median conventionality” paper if its 

50th percentile z-score is in the upper half of all papers.12 Past literature suggests that high impact 

papers typically have both high tail novelty and high median conventionality. Much of the work 

that those papers build on is rooted in conventional knowledge combinations but sprinkles in new 

combinations of existing knowledge as well12. In this paper, we use a pre-calculated version of 

novelty and conventionality provided by SciSciNet, an open source database13. 

 

Extended Data Fig. 8 shows that higher pivot papers tend to make novel combinations.  This 

indicates that when researchers pivot, they are not only being novel in their own terms, compared 

to their own portfolio of research, but they also tend to introduce combinations that are novel in 

science as a whole.  By contrast, high pivots are associated with low conventionality.  Thus high-

pivot work tends not to feature the grounding in conventional combinations that are a key 

combinatorial ingredient in predicting high impact work.  Table S9 further considers regression 

analysis of pivoting behavior, novel combinations, and conventional combinations together. These 

regressions continue to show a substantial pivot penalty. Thus, while high pivots are strongly 

associated with low conventionality, regressions put the weight of impact on pivoting. 

S2.5 New collaborators 

To track a scientist’s engagement with new collaborators over time, we first construct a set of 

collaborators for each author-paper pair, tracking coauthorship interactions among all the 



 
 

15 

disambiguated authors in the author set (see S2.1). We then sort all publications in one’s career by 

publication date and sequentially calculate the number of new collaborators in each paper.  

 

To further understand the characteristics of these new coauthors, we calculate their major field of 

research (both level-0 and level-1) before the paper’s publication year. We also compare the 

affiliation information of new collaboration pairs (based on disambiguated GRID ID) to see if the 

focal author and collaborator share at least one common affiliation. Together, these measurements 

allow us to count the number of new collaborators, as well as whether new collaborators come 

from the same or different field or affiliation. If either the focal author or the collaborator has 

missing data in field or affiliation, this pair is considered as “unknown” and excluded in the 

same/different categorization. 

 

S2.6 Regression methods 

S2.6.1 Output level analyses 

Our most basic analyses consider the output level, where an observation is a given work (paper or 

patent) and where pivot size used is the mean pivot size among the members of the team.  These 

regression models in general take the form: 

𝐼𝑚𝑝𝑎𝑐𝑡𝑖 = 𝛼 + 𝑓(𝑃𝑖𝑣𝑜𝑡_𝑠𝑖𝑧𝑒𝑖) ⁡+ 𝜽𝑿𝒊 + 𝜀𝑖 

where i indexes a given work (paper or patent), 𝐼𝑚𝑝𝑎𝑐𝑡𝑖 is one of the various outcome measures 

(see above), and 𝑿𝒊  is a vector of control variables. Rather than imposing a linear or other 

functional form on the data, we write 𝑓(𝑃𝑖𝑣𝑜𝑡_𝑠𝑖𝑧𝑒𝑖) to emphasize potentially general functional 

forms for the relationship between pivot size and impact.   

 

To reveal potentially non-linear relationships between pivot size and outcome variables, many 

analyses use binned scatterplots14. In Fig. 2a for example, we order the sample of papers by average 

pivot size along the x-axis and split the observations into 20 evenly-sized groups. Then each 

marker is placed at the mean (x,y) value within each group. Similarly, in Fig. 2c, we consider the 

same using patents. 
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We also extend the binned scatterplots analysis to include control variables. For example, for the 

multivariate regression results presented in Fig. 4k, we consider numerous additional controls, 

including fixed effects for average prior impact groups, author age groups, team size, the number 

of new collaborators, and an indicator variable for whether the paper was funded. To include 

regression controls while maintaining the non-parametric advantages of the binned scatterplot 

approach, we in practice run two regressions to residualize pivot size and impact, net of the controls, 

following the Frisch-Waugh-Lovell theorem.  Specifically, we first run regressions of the form: 

PivotSize𝑖 = 𝛼1 + 𝜽𝟏𝑿𝒊 + 𝜀1𝑖 

Impact𝑖 = 𝛼2 + 𝜽𝟐𝑿𝒊 + 𝜀2𝑖 

And then consider the binned scatterplot relationship between residual impact (Impact̃
𝑖 =

Impact𝑖 − 𝛼̂2 − 𝜽̂𝟐𝑿𝒊) and residual pivot size (PivotSizẽ
𝑖 = PivotSize𝑖 − 𝛼̂1 − 𝜽̂𝟏𝑿𝒊). 

 

Finally, when looking at subsets of the data to test the robustness of a negative slope between pivot 

size and impact, we also consider the linear version of the baseline regression, taking 

𝑓(𝑃𝑖𝑣𝑜𝑡_𝑠𝑖𝑧𝑒𝑖) = 𝛽𝑃𝑖𝑣𝑜𝑡_𝑠𝑖𝑧𝑒𝑖.  For example, we run this regression separately in each L1 field 

for papers, and in each CPC patent class to test how often the negative slope of the pivot penalty 

appears.  See Tables S1 and S2.  

 

S2.6.2 Researcher panel level analyses 

To examine the relationship between pivot size and impact within individual researchers, we use 

a panel data structure.  Observations are at the researcher-by-paper and researcher-by-patent 

level, which allows the inclusion of individual fixed effects.  By including individual fixed 

effects, the regressions compare variation in impact within the individual against variation in 

pivot size within the individual.  More generally, the individual fixed effects account for any 

fixed characteristic (observed or unobserved) for a given researcher.  We will also use this panel 

structure, with individual fixed effects, when considering the natural experiment described 

further below.   

 

The panel regression with individual fixed effects in general takes the form: 

𝐼𝑚𝑝𝑎𝑐𝑡𝑖𝑝𝑡 = 𝜇𝑖 + 𝛾𝑡 + 𝛽𝑓(𝑃𝑖𝑣𝑜𝑡_𝑆𝑖𝑧𝑒𝑖𝑝𝑡) + 𝜽𝑿𝒊𝒑𝒕 + 𝜀𝑖𝑝𝑡 
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where i indicates a given researcher, p indicates a given work (paper or patent), and t indexes the 

year (publication year for a paper and application year for a patent).  The 𝜇𝑖 are individual fixed 

effects, the 𝛾𝑡 are time fixed effects, and 𝑿𝒊𝒑𝒕 is a vector of other potential control variables. As 

before, we allow for potentially non-linear relationships between pivot size and impact and hence 

take a non-parametric approach.  Specifically, we generate bins of pivot size and include 

indicator dummies for a work appearing in the relevant bin.  Given the very large number of 

individual fixed effects, we run these models in Stata using reghdfe command suite15.  Standard 

errors are clustered at the researcher level.  

 

To analyze pivoting in more specific contexts, we take subsets of the data.  For example, to shed 

light on reputational mechanisms, we consider the subset of data where an author has multiple 

papers in the same year in the same L1 field, or in the same year and in the same journal.  Table 

S4 presents these results.  To consider the effects of external shocks we take the subset of treated 

and control researchers (see next section). 

S2.7 Difference-in-differences methods 

When studying external shocks, we continued to use the researcher panel data model with 

individual fixed effects.  We implement standard difference-in-differences methods, comparing 

treated researchers to control researchers, before and after the external event. The regressions 

take the form: 

𝑃𝑖𝑣𝑜𝑡_𝑆𝑖𝑧𝑒𝑖𝑝𝑡 = 𝜇𝑖 + 𝛾𝑡 + 𝛽𝑇𝑟𝑒𝑎𝑡_𝑃𝑜𝑠𝑡𝑖𝑝𝑡 + 𝛾𝑃𝑜𝑠𝑡𝑖𝑝𝑡 + 𝜀𝑖𝑝𝑡 

𝐼𝑚𝑝𝑎𝑐𝑡𝑖𝑝𝑡 = 𝜇𝑖 + 𝛾𝑡 + 𝛽𝑇𝑟𝑒𝑎𝑡_𝑃𝑜𝑠𝑡𝑖𝑝𝑡 + 𝛾𝑃𝑜𝑠𝑡𝑖𝑝𝑡 + 𝜀𝑖𝑝𝑡 

where 𝑃𝑜𝑠𝑡𝑖𝑝𝑡 is an indicator for the period after the shock. The indicator for being in the 

treatment group is absorbed with an individual’s fixed effect and so does not appear separately in 

the regression.  𝑇𝑟𝑒𝑎𝑡_𝑃𝑜𝑠𝑡𝑖𝑝𝑡 is an indicator for being in the treatment group after the shock 

and provides the reported difference-in-differences estimate.  The implications of the external 

event for pivot size and the reduced form results for impact are both shown in Fig. 3b-c.  We also 

show “event study” style difference-in-differences plots in Fig. 3d-e, to show how the treatment 

effect evolved before and after the retraction date. Here we replace the binary treatment times 

post variable with a series of relative year indicators, each interacted with treatment status. In 
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addition to the reduced form results, we also consider the two-stage-least-squares estimate, 

where 𝑇𝑟𝑒𝑎𝑡_𝑃𝑜𝑠𝑡𝑖𝑝𝑡 instruments for 𝑃𝑖𝑣𝑜𝑡_𝑆𝑖𝑧𝑒𝑖𝑝𝑡 (Tables S6-7).  As with other researcher-

level panel analyses, standard errors are clustered at the researcher level.  We next describe 

specific details of the retraction experiment, including definitions of the treatment and control 

groups. 

 

S2.7.1 Retractions analysis 

In the retractions analysis, we start with 13,455 papers that were retracted (see SI Section S1.1). 

Treatment timing is the year of the retraction for each paper.  The idea here is that the retraction 

event for a given paper devalues that research.  Scientists who had been drawing on the retracted 

work may naturally move away from that line of research.  The treatment group consists of those 

authors who had cited the retracted paper at least once in the period between the paper’s 

publication year and the year prior to its retraction but were not themselves an author of the 

retracted paper.  We do not include authors of the retracted papers themselves because these 

individuals may experience direct effects from the retraction.  By contrast, those who had cited 

the retracted papers can be seen as utilizing work that then appears to have shakier foundations, 

potentially provoking shifts in the direction of their research.  We further analyze the treated 

group based on how many times the treated authors cited the retracted paper, prior to its 

retraction.  This provides a natural way to consider the intensity of treatment, where authors who 

were building more regularly on the retracted work may naturally undertake a larger move. 

Among the treated authors, there are 164,988 authors who cited the retracted paper at least once 

prior to its retraction and 18,505 authors who cited the retracted paper at least twice.   

 

To build the control group, we consider all authors who cited other publications in the same 

journal and publication year where the (eventually) retracted paper was published. We then 

remove from this set any treated author. Among these control authors, we further use coarsened-

exact-matching (CEM) so that the control authors match closely to the treatment authors prior to 

the treatment year in their publication count and rate.  There are 162,793 control authors. 

 

In addition to the analyses in Fig. 3 of the main text, Table S6, Fig. S6, and Fig. S7 consider 

alternative specifications.  Table S6 first considers alternative outcome measures, where impact 
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is measured as (a) the hit rate of the paper using only the first two years of citations after 

publication or (b) the citation count of the paper in ratio to the field-year mean.  Table S6 further 

considers two-stage-least-squares estimates, with retractions as the instrument.  Fig. S6 considers 

event study plots defining treated authors as the larger set of those who cited the retracted at least 

once prior to retraction.  Fig. S7 further considers event study plots using alternative impact 

measures, examining hit rates and citations counts when observed over a two-year window.  

These analyses all further support the findings in Fig. 3.  

 

S2.7.2 Psychology analysis 

We consider a similar but much smaller natural experiment using replication failures in 

psychology.  Namely, a landmark replication analysis16 quasi-randomly selected 100 psychology 

publications from 2008 and tested them for reproducibility.  Of the tested papers, 64 had results 

that failed to replicate, providing the core for our treatment group.  Treated authors are those who 

had repeatedly cited a non-replicating 2008 paper, prior to the replication analysis, but were not 

themselves an author of the non-replicating paper.  As above, we do not include authors of the 

non-replicating papers themselves because these individuals may experience direct effects from 

the failure to replicate.  By contrast, those who had repeatedly cited the non-replicating papers 

can be seen as utilizing work that then appears to have shakier foundations, potentially 

provoking shifts in the direction of their research.  There are 843 treated authors.  To build the 

control group, we take all authors who cited other papers in the three psychology journals and 

publication year chosen for the replication study (but who did not cite any of the papers in the 

replication analysis). Among these authors, we use coarsened-exact-matching (CEM) so that the 

control authors match closely to the treatment authors prior to the treatment year in their 

publication count and rate. Table S7 presents difference-in-differences estimates for this 

psychology study. 

S2.8 COVID-19 analyses 

COVID-19 provides another kind of external shock that may encourage pivoting.  In contrast to 

the “push” shock of retractions, where authors may pivot away from research areas that no 

longer appear reliable, COVID-19 presents an important new object of study, a “pull” shock that 

may encourage researchers to pivot into this new area.  COVID-19 is of additional interest 
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because of its wide societal import and the opportunity to understand how science as a whole 

pivots to engage a critical new area.  Because the shock is to science as a whole, as opposed to 

specific researchers (as with retraction events), we cannot deploy a natural experiment in the 

same framework as with retractions.  Nonetheless, we can compare researchers who pivot with 

observationally similar researchers who did not pivot, and we can compare within a given 

researcher their COVID-19 work with their own other work, to inform how science responds to a 

critical global shock. 

 

In Fig. 4c, we focus on a subset of COVID authors and non-COVID authors that share similar 

characteristics. Specifically, these career comparison graphs focus on scientists who first published 

in 2005. The COVID scientists here are the 6,406 authors among those who first published in 2005 

and who published at least one COVID publication in 2020. We then match these authors to a 

control group of non-COVID scientists that also started their publication career in 2005 and have 

the same primary level-1 field. For each COVID author, we use a nearest-neighbor match on the 

number of publications between 2015 and 2019 (sampling without replacement) to construct a 

control group that also includes 6,406 authors. 

 

We further analyze impact with and without control variables.  Fig. 4e considers binned scatter 

plots, comparing COVID and non-COVID research, without control variables.  In Fig. 4g-h and 

Fig. 4j, we split the COVID and non-COVID samples into groups based on the median team size, 

number of new collaborators, and whether the paper was connected to a funding source.  

 

For the wide-ranging multivariate regression results presented in Fig. 4k, we include additional 

controls. The additional controls include fixed effects for average prior impact groups, author age 

groups, team size, the number of new collaborators, and an indicator variable for whether the paper 

was funded. In Fig. S8, we include individual fixed effects, or in other words control for all fixed 

characteristics associated with each author. In this individual fixed effect analysis, we are 

considering researchers who produce both COVID papers and non-COVID papers in 2020, thus 

allowing comparison of outcomes and pivoting within individuals who respond to the pandemic 

and comparing outcomes within their contemporaneous body of works. 
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S2.9 Pivots and moderating factors 

The main text considers potential moderating factors that might facilitate successful pivots. The 

analyses are informed by the science of science literature [67-69].  Here we provide background 

on the different dimensions considered, and provide additional analyses. 

 

First, it is sometimes posited that younger scientists are more likely to engage novel research 

streams or more capable of producing novel and high-impact ideas, in accordance with Planck’s 

Principle [17, 19] or a more general creative aptitude among the young [58]. However, we find 

that the pivot penalty appears among both older and younger researchers (Table S5). Thus, while 

creative orientation, skills, and other resources or capabilities may vary according to a researcher’s 

career stage [17, 19, 58], the pivot penalty appears persistently within different career stages. 

 

Second, teamwork may be a critical feature in facilitating adaptability. Not only are teams 

increasingly responsible for producing high-impact and novel research [28, 33, 41, 70], they can 

also aggregate individual expertise [15], extending an individual’s reach and promoting subject-

matter flexibility [29, 71]. Looking to the pandemic, we find that team size was larger for COVID-

19 papers than is typical in the respective field. Compared to field means, COVID-19 papers see 

1.5 additional coauthors on average (a 28% increase in team size, Fig. S9). Further, COVID-19 

authors work to an unusual degree with new coauthors (Fig. 4f), rather than existing collaborators, 

and engaging new coauthors is associated with larger pivots (Fig. S10). These results are consistent 

with teamwork expanding reach [15, 72, 73]. Nonetheless, we again see the pivot penalty in both 

large and small teams, and in teams with and without new coauthors (Fig. 4g-h). Thus, while bigger 

teams and teams with novel coauthors appear to predict higher impact, the pivot penalty persists.  

 

Finally, we further probe adaptability through the lens of funding. We integrate funding data from 

Dimensions, which incorporates 600 funding organizations worldwide, and identify grant-

supported research in 2020 for COVID and non-COVID papers (Fig. 4i). We see that grant-

supported research disproportionately features small pivots. Specifically, there is a large and 

monotonic decrease in grant-supported research as pivot size increases, and this relationship is 

especially pronounced for COVID-19 papers, which are less likely to cite a funding source across 

all pivot sizes. These findings are natural to the extent that funding supports specific agendas, so 
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that large pivots in general, and COVID-19 pivots in particular, tend to occur without 

acknowledging specific grants. Nonetheless, returning to impact, we find that the pivot penalty 

persists whether the paper does or does not acknowledge a specific grant, both in science as a 

whole and among COVID-19 research (Fig. 4j). 

 

Altogether, one can consider numerous potential moderating factors and forms of heterogeneity, 

including individual’s career stage, project-level team size, the use of new coauthors, and funding. 

When examining impact, however, we find that the pivot penalty persists regardless of these 

features. We further use regression methods to incorporate detailed controls for many features 

together (see SI S2.6), finding that net of all these features, the pivot penalty remains substantial 

in magnitude (Fig. 4k).  

S3 Additional analyses 

S3.1 High pivot cases 

Cases of high pivots might potentially be an artifact of name disambiguation, where two 

different people are conjoined into one record but work in different areas.  One test for this is to 

hand-check high pivot cases, comparing database results against public CVs.  To proceed, we 

took a random sample of 10 authors who produce a paper with a pivot score >0.95 in the year 

2020.  Of these 10 authors, 5 were randomly chosen from authors with the 200 most common 

names, and 5 were randomly chosen from authors with uncommon names.  For each author, we 

then took their very high pivot paper (10 papers) as well as all other papers associated with that 

author in the database that were published over the prior three years (totaling another 148 

papers).  We then hand checked every paper in the database associated with these authors against 

the authors’ own CVs, personal websites, Google Scholar profile, Scopus page, or PubMed page 

(depending on what source was available for a given author).   

 

The results of this manual verification were as follows.  First, for the 10 very high pivot papers, 

we found each paper on the authors’ own CVs/ websites / Google scholar etc. profiles. Thus, all 

the high pivot papers appear correctly assigned to these authors. Second, examining the prior 

works of these authors, for 9 of the 10 authors we located 100% of their prior papers in 
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Dimensions on the authors’ public profiles.  For the remaining author, who is located in China, 

we could verify 27 papers (80%) on the author’s Scopus and PubMed profiles, where the other 7 

papers in Dimensions were in Chinese-language journals; these match on name and field of the 

author but are not listed in the extant English-language profiles, so we could not confirm that 

Dimensions was correct, or incorrect, for these 7 papers. In sum, this manual verification 

exercise suggest that all the high pivot papers were correctly assigned to these authors, and we 

could confirm 96% of the works of these authors are also correctly assigned, while the other 4% 

of papers had clear matching characteristics but we could not verify the match against other 

profiles.  The very high success rates matching these authors’ works by hand gives further 

confidence that name disambiguation is sufficiently accurate.  A spreadsheet detailing the hand 

curation exercise for each of the 158 papers analyzed is available from the authors upon request. 

Another approach, which can be scaled across the data, is to analyze generally common names 

and rare names. The idea is that researchers with common names may pose greater challenges for 

name disambiguation, which in our case would be revealed as showing larger apparent pivot 

sizes. To proceed, we take all papers published in 2010.  We then plot a binscatter relating mean 

pivot size to surname frequency (Fig. S11). While we see some variation, overall the relationship 

is quite flat, with the most common surnames showing similar pivot sizes as seen among 

relatively uncommon surnames.  We further consider the pivot penalty relationship, separately 

for both individuals with the most common surnames and, separately, among other authors (Fig. 

S11).  We see that the pivot penalty appears in both groups.  Overall, these additional analyses 

further increase confidence in name disambiguation and the robustness of the findings. 

 

S3.2 Outlier fields 

Table S1 Panel a indicates that a large majority (93.5%) of the 153 fields with at least 20 papers 

show a negative correlation between pivot size and impact.  Here we investigate the 6.5% of 

fields (10 fields) that do not show this negative correlation.  

 

An initial observation is that these outlier fields are relatively small.  Although these 10 fields are 

6.5% of fields, they collectively incorporate only 0.18% of papers.  Table S8 lists these 10 fields, 

together with their observation counts, and the slope and its standard error when relating pivot 
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size and impact.  Of the ten fields, five show a statistically significant relationship.  One of these 

“Other Built Environment and Design” has only 87 papers. 

 

Another important observation is that the outlier fields have characteristics that may make the 

pivot measure less salient in these specific contexts.  Specifically, there are notable field 

commonalities.  First, the only field with a highly statistically significant positive relationship is 

“Visual Arts and Crafts,” and the field Art Theory and Criticism also exhibits a positive (but 

non-significant) relationship.  One interpretation is that art-oriented fields privilege pivoting, but 

these are also fields where books are a main avenue of output and references, and thus our 

journal-reference pivot measure may be less salient in defining reference and pivoting behavior.  

Second, the largest three outlier fields in size are all computer-science related fields.  These are 

relatively small subfields of computer science; the larger computer science fields exhibit the 

usual pivot penalty.  Further, computer scientists rely heavily on conference proceedings as key 

venues for their work.  In publication databases each conference proceeding acts as a different 

journal in each year. This may lead to apparent high pivots as these “journals” come and go, 

making the pivot measure less salient, while at the same time these conference proceedings can 

be associated with high impact new work in computer science.  

 

One may further consider higher level groupings of fields to see if there are any important 

contrasting areas of research.  In Fig. S12, we categorize the L1 fields into 7 higher level 

groupings, mapping each field into one of medical sciences, life sciences, physical sciences, 

engineering, social sciences, humanities, and other.  As can be seen in the figure, there is some 

heterogeneity, but these different areas of research all show substantial, negative relationships 

between pivot size and impact.  

 

Overall, the small minority of fields with the contrasting relationship are those that have 

relatively low numbers of publications and those where journal-based pivot measures may be 

less effective in capturing reference and pivoting behavior. 



 
 

25 

S3.3 Pivoting and field switching in science 

The pivot size measurement framework quantities shifts in research direction on a [0, 1] interval, 

allowing assessment of research shifts in a continuous manner.  The method can also be applied 

using alternative encodings of research areas.  In science, we have alternatively studied pivots 

based on journals as well as field encodings.  In patenting, we have alternatively studied pivots 

using various levels of detail in hierarchical technology class encodings.   

 

One may also be interested in relating the magnitude of pivot sizes, and the pivot penalty, to the 

case where a scientist switches to a new field.  Specifically, one can examine the relationship 

between the pivot measure (examining the references in a paper) with a binary measure of 

switching fields (where field codes are assigned to a paper).  Fig. S13 shows that when an 

individual engages a new field, that paper will be associated with a large average increase in 

pivot size.  The top row shows the results for switching to a new L0 field (there are 22 L0 fields), 

and the bottom row shows the results for switching to a new L1 field (there are 154 L1 fields).  

Switching to a new L0 field code is associated with moving from a pivot size of approximately 

0.5 on average to approximately 0.7 on average.  Considering the pivot penalty, such an increase 

in average pivot size is associated with a hit rate decline by approximately 2 percentage points in 

recent periods (see Fig. 2). In short, switching to a new field is associated with an approximate 

40% drop in the probability of writing a high-impact paper.  Note that the quality of the paper-

level field encodings in large bibliometric databases is the subject of debate17,18, suggesting 

potential noise in measuring field switches, which may in turn attenuate its relationship with 

pivot size and impact.  
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S4 Supplementary Information Figures 

 

 

 

 
 

Figure S1: The pivot penalty with various technology levels. The probability of being a highly 

cited patent is decreasing in pivot size for all technology code levels used to define pivoting 

(n=1.72 million U.S. patents granted from 1980-2015). The difference in impact between the 

highest and lowest pivot size is (a) smallest when using broad level-1 classes and (e) largest when 

using narrow level-5 subgroups. 
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Figure S2: The pivot penalty over time with various technology levels. The slope of the pivot 

penalty is increasing over time, regardless of which level of technology code is used to define pivot 

size (n=1.72 million patents). The increase in slope over time is (a) smallest when using broad 

level-1 sections and (e) largest when using narrow level-5 subgroups. 
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Figure S3: Quantifying pivot size and pivot penalty using L1 field codes. In the main analyses, 

we use journals cited in reference lists to build the referencing vectors and calculate pivots (n=25.8 

million publications from 1970-2015).  Here we consider pivots using the L1 fields of the 

referenced papers, rather than the papers’ journals.  This is a coarser approach, as there are 154 L1 

fields, as opposed to tens of thousands of journals. Panel (a) presents the relationship between 

pivot size using L1 fields and pivot size using journals.  We see a positive relationship. We also 

see a narrowing of the pivot size distribution when using L1 fields, indicating that researchers 

naturally shift less when the measure uses wider encodings for areas of knowledge. Panels (b) and 

(c) present bin scatters relating impact to pivot size. We see the pivot penalty is robust to using the 

field encoding.  Again the distribution of pivot size is substantially condensed, with only a small 

share of papers having pivot sizes above 0.5. See Extended Data Fig. 4 and Fig. S1 for similar 

analyses for patents, calculating pivot size using coarser and finer technology classifications. 
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Figure S4: Bimodal pivot distribution for patents. This figure further explores the bimodal 

nature of the patent pivot size distribution (n=4.2 million inventor-patent pairs published from 

1980-2020). The pivot size distribution shifts leftward when restricting the sample to inventors 

(n=585 thousand inventor-patent pairs) with at least 10 patents in the prior three years (a). The 

pivot size distribution also shifts left when we restrict the sample to inventors with exactly one 

patent in the prior three years (n=996 thousand inventor-patent pairs), but then separate out cases 

where that patent has at least 100 prior art references (b) (n=202 thousand inventor-patent pairs),  

While the presence of very high pivot patents declines substantially, the bimodal nature of the 

patent relationship remains. Thus, the bimodal distribution of patents is not due to cases with a 

small set of reference material.  See Section S2.2.2 for further discussion. 
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Figure S5: Probability of high and low pivot across citation distribution. (a) The x-axis groups 

all papers into deciles by the number of citations within year and L0 field (n=34.4 million papers 

published from 1970-2019). The y-axis reports the odds ratio that a low and high pivot paper will 

be found in that citation bin. The low (high) pivot odds ratio is calculated as the share of papers in 

each citation decile that are in the lowest (highest) decile of pivot size divided by the share of all 

papers in that decile. Papers in the lowest citation decile are almost twice as likely to be high pivot 

papers than low pivot, while papers in the highest citation decile are almost three times as likely 

to be low pivot papers than high pivot. (b) The x-axis groups all papers into upper percentiles by 

the number of citations within year and L0 field. The y-axis reports the odds ratio that a low and 

high pivot paper will be found in that citation bin. Low pivot papers are 3-7 times more likely than 

high pivot papers to surpass the highest thresholds of impact between the 90th and the 99.9th 

percentile of citations (n= 3.5 million). 
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Figure S6: Difference-in-Differences, 1+ reference group. Fig. 3d-e present event study plots 

for pivot size and hit rate, defining the treated group as those who referenced the retracted paper 

multiple times.  Here we present event study plots for (a) pivot size and (b) hit rate but now 

using the broader set of researchers who reference a retracted paper one or more times.  We see 

similar results as in Fig. 3, with an increase in pivot size and a decrease in pivot size after the 

retraction event. 
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Figure S7: Difference-in-Differences, alternative impact measures. Fig. 3d presents an event 

study plots where the hit rate is measured using the whole forward citation window after papers’ 

publications.  Here we consider alternative impact measures. In (a), the hit rate is measured using 

the first two years of citations after publication. In (b), the outcome is a direct citation count over 

two years after publication.  To the extent that retraction events devalue areas of knowledge, 

these events may reduce references to pre-period works related to the retracted paper.  This 

would cause pre-period paper impact to fall among treated authors, resulting in a conservative 

bias by making it harder to detect an impact decline for post-period works. Looking at the first 

two years would mute any effect of the retraction event on citations to the earlier stream.  These 

analyses further support the findings, in addition to acting as robustness tests to time windows 

more generally. 
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Figure S8: Hit rates and pivot size using individual fixed effects. This figure follows the pivot-

impact analysis shown in Fig. 4. In this version, we use a regression adjustment for individual 

fixed effects within each series to control for unobservable factors that might drive pivot size and 

impact differentially across researchers (n=3.6 million author-paper pairs from papers published 

in 2020). 
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Figure S9: Pivoting characteristics by field. These plots examine paper and author features by 

field, comparing COVID and non-COVID research among actively publishing scientists in 2020. 

Markers with darker shading indicate fields with more COVID publications. Authors appear in all 

level-1 fields in which they published in 2020. Scatter plots include the 130 level-1 fields that had 

at least 20 authors publish a COVID-19 paper in 2020.  (a) Mean author age for those who write 

COVID-19 papers is greater than for those who do not in 82% of fields. (b) Mean author prior 

impact for those who write COVID-19 papers is greater than those who do not in 83% of fields. 

(c) Mean team size is higher for COVID-19 papers in 77% of fields.  
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Figure S10: Pivots and new collaborators. These plots consider all 951 thousand 2020 

publications with exactly five authors (similar results are found using different team sizes). (a) 

Papers with no new coauthors are the most common form, while (b) pivot size is increasing with 

the number of new coauthors.  

  



 
 

36 

 

Figure S11: Common and rare names. These figures examine the findings in light of potential 

name disambiguation challenges.  We compare results for scientists with common and rare 

names, where common names may be harder to disambiguate. Sample is 1.3 million papers 

published in 2010. (a) Mean pivot size as function of surname frequency.  This plot shows a bin 

scatter and indicates little relationship between how common a name is and the mean pivot size 

for the individual.  (b) The pivot penalty is robust when analyzed separately among scholars with 

common surnames or less common surnames.  See Section S3.1 for discussion.   
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Figure S12: Pivot penalties by field groups. This figure explores heterogeneity in the pivot 

penalty according to higher level field groupings.  Sample includes 40.9 million paper-field pairs 

published between 1970-2019. Magnitudes vary across field groups, but the pivot penalty appears 

substantial in diverse areas of study.  See Section S3.2 for further discussion. 
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Figure S13: Pivot size and field switching. This figure considers the relationship between pivot 

size and binary indicators for a change in field.  When researchers change field with a new paper, 

mean pivot sizes tend to be substantially larger, both when switching among the 22 Level-0 fields 

(a, n = 118 million paper-author pairs) or switching among the 154 Level-1 fields (e, n = 112 

million paper-author pairs).  Moreover, the binary measure of field switches is strongly associated 

with pivot sizes close to 1 (b-d, f-h).  These findings are broadly similar at different stages of the 

career.  See Section S3.3 for discussion.   
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S5 Supplementary Information Tables 

 

     
Panel a Share of L1 fields with negative 

correlation between pivot size and 

impact: 

Number of fields 

with at least 20 

papers 

    All 1970-2019 papers 93.5% 153 

    All 2020 papers 88.2% 149 

        Non-COVID 2020 papers 89.5% 149 

        COVID 2020 papers 59.5% 111 

      

Panel b Share of L1 fields where 

correlation is becoming more 

negative over time: 
 

    All 1970-2019 papers 88.2% 153 

 

 

Table S1: Pivot-impact relationship by scientific field. This table shows that a large majority of 

fields exhibit negative relationships between pivot size and impact. Further, this relationship is 

becoming more negative over time. In the 1970-2019 rows, impact is measured as an indicator for 

being in the 95th percentile of citations by year and field. In the 2020 rows, impact is measured as 

the journal hit rate, or the probability that a paper will reach the 95th percentile of citations based 

on journal placement. In all rows, only fields with at least 20 papers are included in the share, with 

the number of qualifying fields listed for each row. In Panel a, the sign of the relationship is 

estimated within each field using linear regression of impact regressed on pivot size. In Panel b, 

we add to the field-specific regressions an interaction between pivot size and year to estimate the 

change in slope over time.  
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Panel a Share of classes with negative 

correlation between pivot size and 

impact: 

Number of classes 

with at least 20 

patents 

    All 1980-2015 patents 91.3% 127 

      

Panel b Share of classes    

where correlation is becoming    

more negative over time:  

    All 1980-2015 patents 76.4% 127 

 

 

Table S2: Pivot-impact relationship by patent class. This table shows that a large majority of 

patent classes exhibit negative relationships between pivot size and impact. Further, this 

relationship is becoming more negative over time. Impact is measured as an indicator for being in 

the 95th percentile of citations by year and field. In all rows, only classes with at least 20 patents 

are included in the share, with the number of qualifying fields listed for each row. In Panel a, the 

sign of the relationship is estimated within each field using linear regression of impact regressed 

on pivot size. In Panel b, we add to the field-specific regressions an interaction between pivot size 

and year to estimate the change in slope over time.  
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 (1) (2) (3) (4) (5) 

      

Pivot Size -0.0687*** -0.0706*** -0.0714*** -0.0688*** -0.0699*** 

 (0.000774) (0.00115) (0.00134) (0.00186) (0.00368) 

Constant 0.0906*** 0.103*** 0.109*** 0.119*** 0.151*** 

 (0.000463) (0.000625) (0.000711) (0.000939) (0.00168) 

      

Sample At least 5 

references 

At least 15 

references 

At least 20 

references 

At least 30 

references 

At least 50 

references 

Observations 1,337,008 890,402 737,279 472,913 175,472 

R-squared 0.006 0.004 0.004 0.003 0.002 

 

 

Table S3:  The pivot penalty for alternative thresholds for the number of cited references. 

These analyses use publications in 2010.  The dependent variable is an indicator for being in the 

upper 5th percentile of citations received for the field and publication year.  Moving left to right, 

the columns increasingly restrict the sample, as indicated, according to the number of backwards 

references a paper makes.  Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * 

p<0.1). 
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 (1) (2) (3) (4) 

          

Pivot Size -0.0751*** -0.0414*** -0.0426*** -0.0308*** 

 (0.000521) (0.000728) (0.000788) (0.000858) 

     
Individual FE  X   
Individual X Field of Journal FE  X  
Individual X Journal FE    X 

     
Observations 3,708,999 3,708,999 3,708,999 3,708,999 

R-squared 0.005 0.215 0.299 0.453 

 

 

Table S4: The pivot penalty with individual, field, and journal fixed effects. This table 

reports regressions of impact on pivot size.  The dependent variable is an indicator for a paper 

reaching the 95th percentile of citations for the field and year. The regression sample is all 

papers published between 2005 and 2010 and where an author has multiple papers appear in the 

same field and journal. Individual fixed effects are added to the model in column 2. Individual by 

field of journal fixed effects are added in column 3, where the field of each journal is defined by 

the modal field of papers published in the journal. Individual by journal fixed effects are used in 

column 4. Comparing columns (4) and (2) we see that the pivot coefficient is 26% smaller net of 

individual by journal fixed effects.  Heteroskedasticity-robust standard errors are reported in 

parentheses (*** p<0.01, ** p<0.05, * p<0.1). 
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 (1) (2) (3) (4) (5) (6) 

       

Pivot Size -0.0779*** -0.0644*** -0.0530*** -0.0306*** -0.0372*** -0.0500*** 

 (0.000772) (0.00124) (0.00125) (0.00816) (0.00874) (0.0106) 

Career Age x Pivot Size  -0.00105***     

  (8.28e-05)     

Career Age  0.00102***     

  (4.76e-05)     

Constant 0.116*** 0.102*** 0.103*** 0.0795*** 0.0883*** 0.0888*** 

 (0.000455) (0.000747) (0.000685) (0.00454) (0.00483) (0.00575) 

       

Individual Fixed Effects No No Yes Yes Yes Yes 

Career Age Sample All  All All 10+ years 4-9 years 1-3 years 

Observations 1,555,874 1,555,874 1,555,874 29,082 27,554 16,281 

R-squared 0.007 0.007 0.369 0.404 0.405 0.412 

 

 

Table S5:  The pivot penalty by career stage. These analyses use publications in 2010.  The 

dependent variable is an indicator for being in the upper 5th percentile of citations received for 

the field and publication year. Column (1) presents the baseline pivot penalty result with no 

controls.  Column (2) shows a small negative interaction between pivot size and career stage in 

predicting impact. Researchers further in their career thus face somewhat large pivot penalties, 

although this steepening of the pivot penalty is small, and much smaller than the general pivot 

penalty.  The regression coefficient of the interaction with career age (-.00105) is 1.6% of the 

magnitude of the main pivot size coefficient (-.0644).  Column (3) presents a baseline 

specification with individual fixed effects.  Columns (4)-(6) then run separate individual fixed 

effect regressions for the indicated range of career ages, further restricting the sample to authors 

with exactly the same publication rate over the prior three years (5 publications), to ensure 

similarity in productivity. These final analyses further show that pivot penalty appears at the 

earliest stages of the career. Robust standard errors in parentheses (*** p<0.01, ** p<0.05, * 

p<0.1). 
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Panel a 

 

Panel b 

 

Table S6:  Difference-in-Differences analysis, retractions. This table presents the regression 

results for Fig. 3 together with alternative specifications.  The top table (Panel a) considers the 

treatment sample defined by having cited a retracted paper at least once prior to its retraction.  

The bottom table (Panel b) considers the treatment group defined as having cited a retracted 

                          (1) (2) (3) (4) (5) (6) (7) 

 Reduced Form Two-Stage Least Squares 

 
Pivot Size Hit Paper 

Hit Paper 

(2-yr) 

Normalized 

Citations 
Hit Paper 

Hit Paper  

(2-yr) 

Normalized 

Citations 

Treated × post                       0.025*** -0.004*** -0.007*** -0.041***    

                          (0.001) (0.001) (0.001) (0.008)    

Post                      -0.017*** 0.000 0.001** 0.007 -0.003*** -0.003*** -0.021*** 

                          (0.001) (0.001) (0.001) (0.007) (0.000) (0.000) (0.006) 

Pivot size                
    -0.164*** -0.266*** -1.642*** 

                          
    (0.024) (0.024) (0.313) 

YearFE                    X X X X X X X 

AuthorFE                  X X X X X X X 

R-squared                 0.418 0.153 0.158 0.095 - - - 

Observations              5,823,683 5,823,683 5,823,683 5,823,683 5,823,683 5,823,683 5,823,683 

      

                          (1) (2) (3) (4) (5) (6) (7) 

 Reduced Form Two-Stage Least Squares 

 
Pivot Size Hit Paper 

Hit Paper 

(2-yr) 

Normalized 

Citations 
Hit Paper 

Hit Paper  

(2-yr) 

Normalized 

Citations 

Treated × 

post                       
0.037*** -0.007*** -0.011*** -0.061***    

                          (0.001) (0.001) (0.001) (0.015)    

Post                      -0.012*** -0.002*** -0.001** -0.014 -0.004*** -0.005*** -0.033*** 

                          (0.001) (0.001) (0.001) (0.008) (0.001) (0.001) (0.009) 

Pivot size                
    -0.191*** -0.308*** -1.668*** 

                          
    (0.035) (0.036) (0.411) 

YearFE                    X X X X X X X 

AuthorFE                  X X X X X X X 

R-squared                 0.441 0.159 0.166 0.079 - - - 

Observations              2,958,536 2,958,536 2,958,536 2,958,536 2,958,536 2,958,536 2,958,536 

      



 
 

45 

paper multiple times prior to its retraction.  In both tables the columns are the same.  Columns 

(1) considers the effect of the shock on pivot size. Columns (2)-(4) consider the reduced-form of 

the shock effect on impact.  Impact is measured alternatively as the hit rate of the paper using the 

whole forward citation window after publication (2), the hit rate of the paper using only the first 

two years of citations after publication (3), and the citation count of the paper in ratio to the 

field-year mean (4).  Columns (5)-(7) then consider these impact effects again using two-stage 

least squares.   All regressions include individual fixed effects and year fixed effects.  Standard 

errors are clustered at the author level and shown in parentheses (*** p<0.01, ** p<0.05, * 

p<0.1).   
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Table S7:  Replication analysis. This table considers replication failures in psychology, where 

prior work researchers had been building upon is no longer seen as reliable.  The table form 

follows the same structure as Table S6. See also Section S2.7.2 for discussion of methods. 

All regressions include individual fixed effects and year fixed effects.  Standard errors are 

clustered at the author level and shown in parentheses (*** p<0.01, ** p<0.05, * p<0.1).   

 

 

  

                          (1) (2) (3) (4) (5) (6) (7) 

 Reduced Form Two-Stage Least Squares 

 
Pivot Size Hit Paper 

Hit Paper 

(2-yr) 

Normalized 

Citations 
Hit Paper 

Hit Paper  

(2-yr) 

Normalized 

Citations 

Treated × post                       0.014*** -0.015** -0.019*** -0.067**    

                          (0.005) (0.006) (0.006) (0.032)    

Pivot size                
    -1.117* -1.355** -4.868 

                          
    (0.599) (0.643) (2.972) 

YearFE                    X X X X X X X 

AuthorFE                  X X X X X X X 

R-squared                 0.309 0.096 0.086 0.085 - - - 

Observations              56,257 56,257 56,257 56,257 56,257 56,257 56,257 
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    Pivot-Impact Regression Estimates 

Field 

Number of 

Papers Slope Standard Error P-value 

          

Distributed Computing 36295 0.012 0.005 0.017 

Computer Hardware 15579 0.017 0.007 0.018 

Other Information and Computing Sciences 11202 0.025 0.011 0.017 

Film, Television and Digital Media 7088 0.018 0.016 0.259 

Other Earth Sciences 3015 0.005 0.023 0.826 

Visual Arts and Crafts 2195 0.122 0.024 0.000 

Art Theory and Criticism 589 0.093 0.085 0.276 

Other Law and Legal Studies 140 0.052 0.172 0.763 

Other Built Environment and Design 87 0.450 0.187 0.018 

Other Philosophy and Religious Studies 73 0.385 0.220 0.085 

 

 

Table S8:  Outlier scientific fields. This table lists the 10 scientific fields that are outliers in 

showing a positive relationship between pivot size and impact.  These 10 fields represent 6.5% 

of fields and only 0.18% of papers.  See Section S3.2 for detailed discussion.   
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Panel a 

 (1) (2) (3) (4) (5) (6) 

Pivot Size -0.101***  -0.0978*** -0.104***  -0.0987*** 

 (0.00172)  (0.00175) (0.00276)  (0.00278) 

       

Conventionality (median)  0.000143*** 1.76e-05  0.000130*** -4.82e-06 

  (1.22e-05) (1.24e-05)  (5.01e-05) (5.00e-05) 

Novelty (tail)  -0.00118*** -0.000971***  -0.00137*** -0.00115*** 

  (3.26e-05) (3.27e-05)  (5.66e-05) (5.67e-05) 

       

       

Field FE Y Y Y Y Y Y 

Conventionality Range .25 to .75 

percentile 

.25 to .75 

percentile 

.25 to .75 

percentile 

.40 to .60 

percentile 

.40 to .60 

percentile 

.40 to .60 

percentile 

       

Observations 379,346 379,346 379,346 151,646 151,646 151,646 

R-squared 0.012 0.006 0.014 0.013 0.008 0.016 

 

Panel b 

 (1) (2) (3) (4) 

     

Pivot Size -0.108*** -0.102*** -0.106*** -0.101*** 

 (0.00391) (0.00393) (0.00872) (0.00876) 

  9.46e-05  0.000568 

Conventionality (median)  (0.000141)  (0.00155) 

  -0.00112***  -0.000980*** 

Novelty (tail)  (8.18e-05)  (0.000181) 

     

Field FE Y Y Y Y 

Conventionality Range .45 to .55 

percentile 

.45 to .55 

percentile 

.49 to .51 

percentile 

.49 to .51 

percentile 

Observations 75,868 75,868 15,212 15,212 

R-squared 0.015 0.017 0.018 0.020 

 

Table S9:  Pivots and combinations. This table presents regression evidence considering 

pivoting behavior, novel combinations, and conventional combinations together. The dependent 

variable is an indicator for being a high impact paper, defined as in the upper 5th percentile of 

citations received for the field and year.  The analysis uses papers published in 2010.  See 

Section S2.3 for details on the combinatorial measures.  To test whether pivot size predicts 

citation impact net of conventionality and novelty, we control for all three variables 

independently and over narrow ranges of the conventionality score.  In Panel a, the first three 

columns consider the middle 50 percent of observations by conventionality, while the second 

three columns consider the middle 20 percent of observations by conventionality. In Panel b, the 

first two columns consider the middle 10 percent of observations by conventionality, while the 

next two columns consider the middle 2 percent of observations by conventionality. These 

regressions continue to show a substantial impact penalty. Standard errors in parentheses (*** 

p<0.01, ** p<0.05, * p<0.1). 
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Author Year 

Pivot 

Size  Paper Title 

1 2020 0.95 The challenges of modeling and forecasting the spread of COVID-19 
 

2019 
 

Reducing Bias in Estimates for the Law of Crime Concentration 
 

2018 
 

Sequential data assimilation for 1D self-exciting processes with application to urban 

crime data  
2018 

 
The Role of Graphlets in Viral Processes on Networks 

    

2 2020 0.51 A SARS-CoV-2 vaccine candidate would likely match all currently circulating 

variants  
2019 

 
Humoral Response to the HIV-1 Envelope V2 Region in a Thai Early Acute Infection 

Cohort  
2019 

 
Prolonged evolution of the memory B cell response induced by a replicating 

adenovirus-influenza H5 vaccine  
2019 

 
Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B 

cell responses     

3 2020 0.18 Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells 
 

2019 
 

Middle East Respiratory Syndrome Coronavirus in Dromedaries in Ethiopia Is 

Antigenically Different From the Middle East Isolate EMC  
2019 

 
Generation of bat-derived influenza viruses and their reassortants 

 
2017 

 
Characterization of a Novel Bat Adenovirus Isolated from Straw-Colored Fruit Bat 

(Eidolon helvum) 

 

Table S10: Researcher pivot examples. This table presents examples for three researchers with 

substantially different pivot sizes.  To see pivot size variation in a common context, we examine 

researchers who published a 2020 paper related to COVID-19. We present the paper title for the 

focal paper as well as papers titles for three recent works prior to 2020.  The high-pivot 

researcher (top) makes a large jump from unrelated topics.  The middle-pivot researcher is 

moving from study of other viruses to the coronavirus.  And the low-pivot researcher has prior 

work on the coronavirus.   
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