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Abstract

The scientific community assigns credit or “priority” to individuals who publish an important discovery
first. We examine the impact of losing a priority race (colloquially known as getting “scooped”) on
subsequent publication and career outcomes. To do so, we take advantage of data from structural
biology where the nature of the scientific process together with the Protein Data Bank — a repository
of standardized research discoveries — enables us to identify priority races and their outcomes. We find
that race winners receive more attention than losers, but that these contests are not winner-take-all.
Scooped teams are 2.6 percent less likely to publish, are 20 percent less likely to appear in a top-10
journal, and receive 21 percent fewer citations. Getting scooped has only modest effects on academic
careers. If researchers are scooped early in the process, they find ways to pivot their research to minimize
the effect. Finally, we present evidence that the priority reward system reinforces inequality of reputation
in science. On the whole, these estimates inform both theoretical models of innovation races and suggest
opportunities to re-evaluate the policies and institutions that affect credit allocation in science.
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1 Introduction

“In short, property rights in science become whittled down to just this one: the recognition by
others of the scientist’s distinctive part in having brought the result into being.”

– Robert K. Merton, Priorities in Scientific Discovery: A Chapter in the Sociology of Science
(1957)

Basic science is a critical input to innovation, but it may be under-provided in competitive markets because
discoveries are not directly marketable and property rights are difficult to enforce. Unlike applied research,
basic (or “pure”) scientific research advances our fundamental understanding of the world, but typically does
not yield immediate opportunities for commercialization (Nelson 1959; Arrow 1962). As a result, credit
for ideas, rather than direct profits, is an important potential motivator of innovative activity (Dasgupta
and David 1994). Within academia, there is a widespread notion that the first person to publish a new
discovery receives the bulk of the credit. Scientists therefore compete fiercely for priority (Merton 1957).
Famous examples of priority disputes include Isaac Newton versus Gottfried Leibniz over the invention of
calculus, Charles Darwin versus Alfred Wallace over the discovery of natural selection and evolution, and
more recently, Grigori Perelman versus Shing-Tung Yau, Xi-Peng Zhu, and Haui-Dong Cao over the proof
of the Poincaré conjecture. This competition for recognition shapes the culture and professional structure
of many disciplines, and scientists regularly worry about their work being “scooped” or preempted by a
competitor (Hagstrom 1974). However, there is little empirical evidence documenting how credit is allocated
in science or how rewards are shared between the “winners” and “losers” of these races. This division of
credit or “priority premium” is an important parameter, because it dictates the intensity of the competition
to publish first. A relatively even credit split could lead to less competition than a winner-take-all scenario,
which could meaningfully affect the pace, direction, and quality of research.

Therefore, the contribution of this paper is to empirically measure this priority premium. We analyze the
impact of getting scooped on the losing project (in terms of probability of publication, journal placement, and
citations) as well as on the scooped scientist’s subsequent career. We also investigate whether competition
for academic attention is a driver of inequality within scientific disciplines.

Conceptually, our goal is to measure the cost of getting scooped by constructing comparisons in which
multiple teams of scientists are working independently and concurrently on an identical or very similar
project. In practice, these races are challenging to identify for three reasons. First, many academic fields use
a variety of methods and seek to answer fairly open-ended questions, and so finding near-identical projects is
difficult. Second, even if the questions are well-defined, it is difficult — especially without expertise in a given
scientific field — to quantify the intellectual distance between two papers in topic space. Third, scooped
projects are often abandoned, making them impossible to track in publication data. We tackle these chal-
lenges by analyzing project-level data from the field of structural biology. Specifically, we examine projects
in the Protein Data Bank (PDB), a repository for structural coordinates of biological macromolecules. The
PDB is a centralized, curated, and searchable database of biological details contributed by the worldwide
research community, and contains over 150,000 macromolecule structures.1 Several features of the PDB
allow us to make headway on the key empirical challenges described above. First, structural biology papers
have a well-defined objective, which is to describe the three-dimensional shape of a known protein. Once
the first paper about a protein structure is published, any follow-up publications serve mostly to confirm the
result of the first. Second, projects are grouped by the PDB according to molecular similarity, which allows

1The vast majority of these macromolecules are proteins, and therefore we will often refer to them as such.
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us to identify papers written by separate teams that solve identical or very similar molecular structures.
Lastly, the PDB uniquely allows us to observe projects that are scooped shortly after completion but before
publication. Scientists are required by journals to upload structures to the PDB prior to publication, so we
can see projects that were completed but never appeared in print. Moreover, the rich metadata in the PDB
allows us to reconstruct the timelines of projects, and find instances where teams were — unbeknownst to
each other — working on the same molecule at the same time. Structural biology is a secretive field,2 so in
most cases, teams in our data are scooped unexpectedly near the end of their projects.

We construct races using two key dates that are recorded for all PDB projects. First, the deposit date
marks when the scientist first uploaded her findings to the PDB. Scientists typically deposit their findings
shortly after a manuscript has been submitted for publication. The second is the release date, which closely
corresponds to the date of publication and is usually two to six months after deposit. Critically for our
design, the data is hidden from the public (and from competing scientists) between deposit and release. To
construct races, we find instances where two or more teams had deposited a structure discovery for identical
macromolecules independently of each other prior to the other competitors’ release date. The order of release
then defines the outcome of the race. The first team to release is the winner, and the second team is scooped.
We identify 1,611 races in our data. These races consist of 3,279 separate projects out of 67,297 total projects
in our sample period from 1999 to 2017, suggesting that five percent of all structural biology projects are
involved in a late-stage race to publication. These races are composed of a diverse set of scientific teams from
different countries, institutional prestige, and experience. In the main analysis of this paper, our definition of
scooped projects focuses only on late-stage races where both teams are on the cusp of publication. Focusing
primarily on these late-stage scoops is advantageous for the economic interpretation of our results. Since
both projects had been completed independently prior to publication, we can infer that the second-place
team would have published the priority paper in the counterfactual where they had not been scooped. The
estimated difference in observed outcomes therefore isolates the premium for novelty awarded by editors and
readers. The downside of focusing on these narrow post-deposit scoops is that the scientists are passive at
this point. The research has been largely completed and the timing of release is in many ways out of their
hands, so these races offer little insight into the strategic interactions between racing teams, a central topic
in the economics of R&D racing. Therefore, as an extension in Section 5, we study a sample of teams that
were scooped after they had begun their experiments, but before they had deposited their final project, in
order to learn more about these strategic interactions.

While getting scooped is not randomly assigned, we use multiple methods to assess the validity of the
causal identification assumptions. We estimate the effect of winning a race using the naturally occurring
variation in the priority ordering of races. Therefore, omitted variables bias is a threat to the causal inter-
pretation of the estimates. If the winners are positively selected on experience, research ability, or university
prestige, our estimates of the scoop penalty will be biased upwards (in terms of magnitudes). However, we
find that the outcome of races — even if not perfectly random — is highly unpredictable. We observe cases
of both high-ranked teams scooping low-ranked teams, and low-ranked teams scooping high-ranked teams.
Throughout the analysis, we carefully document potential sources of bias and assess treatment balance using

2Historians of the field suggest that crystallography is unusually secretive due to a combination of (a) high project costs
and (b) ease of imitation by competitors after those high costs have been sunk. The field has worked actively to encourage
data sharing through the PDB, though the competitive nature of the field was an impediment. The compromise struck by
the PDB was that scientists must only share their data at the time of publication, not before (Strasser, 2019). In a survey of
structural biologists we conducted, 80 percent of the respondents say they rarely if ever circulate their findings in a working
paper or pre-print prior to journal publication. Klebel et al. (2020) find that 40 percent of journals have unclear policies about
the admissibility of pre-print submissions, which may exacerbate the reluctance to share early work.
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the observable team and author characteristics. To further mitigate concerns of omitted variables bias, we
use the post-double-selection Lasso method for control variable selection (Belloni et al. 2014).

We find that getting scooped has a moderate-sized impact on the success of the scooped project. Scooped
projects are 2.6 percent less likely to be published. Scooped papers appear in a 0.19 standard deviation lower-
ranked journal, and are 20 percent less likely to appear in a top-10 journal. Scooped papers receive 21 percent
fewer citations, and are 24 percent less likely to be a “hit” paper, defined as reaching the top 10 percent in
citations for that publishing year. While these effect sizes are meaningful, they are far from a winner-take-all
division of credit. Focusing on citations as an outcome, our estimates imply that the losing paper receives 44
percent of the total citations accrued by both papers, a much higher share than the zero percent assumed by
a winner-take-all model. Much of the citation effect is driven by journal placement, with only a five percent
difference in citations once we control for journal fixed effects. We provide suggestive evidence that editors
and reviewers have a strong taste for novelty. Papers that are scooped prior to submission to a top journal
are rarely, if ever, accepted for publication. Some scooped papers do appear in top journals, but only if they
were far along in the review process on the date they are scooped.

Does getting scooped have a detrimental impact on the careers of individual authors? We compare the
future publications, citations, and academic longevity of scientists on the winning and losing teams. We find
that scientists who are scooped are about six percent less likely to be actively depositing in the PDB five
years after they were scooped, and two percent less likely to be publishing in life and medical sciences as a
whole. We do not find significant effects on intensive margin publication rates. However, scooped scientists
receive 17 percent fewer citations to their future work, an effect that is stronger for novice scientists (32
percent) than their veteran co-authors (13 percent).

The main analysis focuses only on scoops where the losing team had already deposited and was therefore
limited in its opportunity to change its research. When considering cases of pre-deposit scoops (i.e., scoops
that occur before the losing team has deposited their work), we find that scientists are able to strategically
respond to being scooped by adjusting the scope and direction of their project, and also by integrating insights
from the winning publication. We identify this subsample of races using the “collection date” feature of the
PDB, which allows us to find teams that had done their initial experiments but had not yet deposited their
findings in the PDB. When scooped in this intermediate stage, they take 1.3 years longer from collection to
deposit than teams that are scooped after depositing. In that time, they tend to include additional structure
deposits in their paper, and shift the focus of their writing away from just describing the structure itself and
toward more analysis of protein function. They are also more likely than our main sample of scoops to build
on the priority findings using a technology called molecular replacement. Although some of these strategic
responses to getting scooped slow the scientists down, they also help offset the growing scoop penalty.

We analyze and discuss how the priority reward system relates to inequality in science. Our sample of
races provides unique insight into how reputation affects academic attention, because we see teams of varying
reputation and affiliation competing to publish the same discovery first. We find that when a high-reputation
lab scoops a relatively unknown lab, they receive 66 percent of the total citations, but when a low-reputation
lab scoops a high-reputation lab, they only receive 47 percent of the total citations. We rationalize this
asymmetry in priority rewards with a model of academic attention based on the statistical discrimination
literature (Phelps 1972; Aigner and Cain 1977). This relationship between priority credit and reputation
suggests that compensation in science is not formulaic, but may be influenced by the attention constraints
and biases of editors and readers.

Finally, we benchmark the size of the scoop penalty by comparing it to the perceptions of active structural

3



biologists. We survey 915 corresponding authors of papers linked to the PDB and pose a hypothetical
scenario about getting scooped. The respondents estimate a 25 percent probability of getting scooped
between submission and publication, much larger than the three percent chance we document in the PDB
data. We then ask them to predict the probability of publication and expected citations if they are scooped
by a competitor’s paper. They predict that they only have a 66 percent chance of publishing the paper,
again much lower than the 85 percent of scooped projects that we observe being published in the PDB data.
Finally, they estimate a 59 percent penalty in citations compared to the hypothetical winner, much higher
than the 21 percent penalty we estimate in the PDB data.3 These comparisons suggest that scientists may
be overly concerned about the probability and cost of getting scooped, and perhaps better information about
the true outcome of races might alleviate concerns about risk and competition in academia.

We choose to focus on structural biology because the unique features of the PDB allow us to estimate an
internally valid priority effect in a way that — to the best of our knowledge — would not be possible in other
fields of science. However, a narrow focus on one field naturally raises questions of external validity. Different
academic fields have varying norms, institutions, and technology that might lead to different distributions of
priority and mechanisms for assigning credit. The scoop penalty may be higher in structural biology than,
for example, economics, because structure discoveries are “one right answer” solutions and therefore similar
papers are potentially more substitutable. On the other hand, because structural biology is an experimental
field, there could be inherent value in replication, which might increase the attention granted to scooped
papers as compared to more theoretical fields like pure mathematics. We argue that structural biology is an
important area of research per se, and is therefore worthy of our attention. However, the research questions
and methods structural biologists use are similar to other important fields in the basic life sciences, and so
we suspect that our qualitative conclusions may apply to these fields as well.

The size of the priority premium directly relates to the level of competition in science. In a scenario where
priority rewards are evenly split between the first- and second-place team, there is no reason to compete
to publish first. At the opposite extreme, if priority rewards are winner-take-all, the competition will be
intense. This competition in turn has important implications for how science functions. On one hand, sharp
priority rewards can encourage intense effort on solving frontier problems. A priority system also has the
public benefit of encouraging disclosure, which is critical for fostering follow-on innovation (Williams, 2013).
On the other hand, some have theorized that R&D racing might induce over-investment and duplication of
effort on particular projects (Loury, 1979; Hopenhayn and Squintani, 2021). In a companion paper (Hill
and Stein 2020), we study how high levels of competition generated by unequal priority rewards also impact
the quality of scientific work. Our results suggest that the competition to publish first induces scientists
to rush, and ultimately results in lower-quality research. Some journals — seemingly in response to these
rushing concerns — have begun to explicitly offer a grace period where they will consider scooped papers
for publication (PLOS Biology Staff Editors 2018, Marder 2017). This appears to be an effort to directly
reduce the priority premium by ensuring more credit for the second-place team. Moreover, competition may
affect science along other dimensions. For example, high levels of competition may reduce collaboration
and the free sharing of information, ultimately slowing scientific progress. Therefore, measuring the priority
premium — which maps directly to the intensity of scientific competition — is a critical first step in this
agenda.

The remainder of the paper proceeds as follows. Section 1.1 offers a brief literature review. Section 2
3We also estimate these numbers in a subsample of the PDB data that is most similar to the hypothetical posed in the

survey and still find evidence of pessimism. See Table 8 for details.
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provides some scientific background and a description of our data. Section 3 describes the empirical design
and identification. Section 4 presents results for the short-run impact on publication, journal placement, and
citations, as well as the long-run career results. We also discuss the role of editors and the timing of races for
the distribution of priority rewards. Section 5 studies the strategic response to being scooped in races where
the scooped team had not yet completed the project. Section 6 describes a model of academic attention and
reports results for heterogeneity of the scoop penalty by pre-existing reputation. Section 7 benchmarks the
size of our estimates against the beliefs of surveyed structural biologists about the probability and cost of
getting scooped. Section 8 concludes.

1.1 Related Literature

This paper contributes to several distinct but connected literatures, both in economics and disciplines in-
terested in the “science of science.” First, and most broadly, it contributes to our understanding of how
incentives for basic research are structured. Second, it adds to a more narrow empirical literature about the
causes and consequences of innovation races. Finally, it contributes to a literature about career dynamics in
scientific labor markets and the role of academic reputation.

Priority races in science are often compared to patent races in industry. However, incentives for basic
scientific advances are in many ways distinct from patents. Inventors in a patent race are competing for prof-
its, while researchers in a priority race are competing for journal placement, citations, and recognition from
their peers. However, both systems compensate researchers for the production of public goods, incentivize
timely disclosure of knowledge, and hasten the pace of discovery. Both systems are usually conceptualized
as tournaments for a discrete innovation reward or prize, with the first innovator getting the outsized share
of rewards.

Theoretical models of patent races have considered how racing affects the amount of R&D investment
(Loury 1979; Lee and Wilde 1980) as well as the pace of research and the amount of risk-taking induced
by the structure of races (Dasgupta and Stiglitz 1980). Many of these models pre-suppose a winner-take-all
reward, which has implications for the outcome of innovation tournaments and the strategic behavior of
the participants. The conventional wisdom in the sciences — and the assumption underlying much of the
theoretical economics work on the topic — is that the process of scientific discovery is also a winner-take-all
tournament, even if the prize is priority recognition rather than a patent. (Merton 1957; Stephan 1996).
Dasgupta and David (1994) explain that a discontinuous priority reward might arise in science because of
a fundamental verification problem. Because of the public goods nature of new knowledge, a team that
tries to publish the second paper cannot credibly prove to the community that they would have successfully
completed the project absent the help of the priority paper. Even if it would be socially optimal to share
more credit with teams who were working in parallel, these information frictions might make credit-sharing
difficult. The discontinuous priority reward structure has implications for the pace of research and the
strategic interaction of teams (Bobtcheff et al. 2016). Despite these models’ influence on our understanding
of innovation systems, there is very little empirical evidence about the actual distribution of rewards in R&D
races. Therefore we believe our estimates provide important context for theoretical and policy discussions
about the incentives for scientific innovation.

This paper joins a small literature that aims to study innovation races empirically (Lerner 1997). Most
related to our work, Thompson and Kuhn (2020) document that winners of patent races do more innovation
in the future, and that this innovation is more likely to be related to the original patent. The authors
identify patent races by looking for patents that were rejected for lack of novelty. Bikard (2020) studies the
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phenomenon of simultaneous discovery in science, and documents many cases of papers that are similar in
content, are published around the same time, and are frequently cited together. However, our method of
using biological details to link competing papers allows us to find simultaneous discoveries where one paper
goes unpublished or is cited infrequently in the future.

Our heterogeneity by reputation estimates contribute to work in sociology and economics about path-
dependent advantage in academic prestige, commonly called The Matthew Effect Merton (1968). Our results
build on recent empirical work that has documented evidence of the Matthew Effect in life sciences (Azoulay
et al. 2013), astronomy (Hill 2019), and grant funding (Bol et al. 2018, Jacob and Lefgren 2011, Wang et al.
(2019)).

2 Background and Data Construction

2.1 Scientific Primer: Structural Biology and the Role of Proteins

In this section we provide a primer on the field of structural biology, a setting particularly conducive to
studying scientific races. Structural biology is the study of the three-dimensional structure of biological
macromolecules. These macromolecules include deoxyribonucleic acid (DNA), ribonucleic acids (RNA), and,
most commonly, proteins. Proteins contribute to almost every process inside the body. They transport
oxygen in blood (hemoglobin), trigger muscle contractions (actin and myosin), and regulate blood sugar
(insulin). In many ways, the form or structure of a protein determines its function. For example, antibodies
are Y-shaped immune system proteins that bind to foreign molecules (like viruses or bacteria) with two of
their arms, while recruiting other immune system proteins with the remaining arm. It is exactly this Y
shape that allows the antibody to function (National Institute of General Medical Sciences 2017). Protein
folding and structure has important applications, particularly in medicine, and fifteen Nobel Prizes have
been awarded for advances in structural biology (Wlodawer et al. 2008; Martz et al. 2019).

Proteins are composed of chains of amino acids, which range in length from a few dozen to several
thousand amino acids long. Scientists have long known how to determine a protein’s amino acid sequence,
but it is much more difficult to understand how they are folded. Most protein structures are solved using a
technique called x-ray crystallography, and each structure determination project may take many months or
years. Scientists grow proteins into crystals, subject them to x-ray beams at large synchrotron facilities, and
use the resulting diffraction data to determine a model of the protein’s structure (Goodsell 2019). Although
knowledge about protein structures is useful for applied technologies, the discovery of the structure itself
is not patentable.4 New structures are usually solved by academic researchers at universities or research
centers, although 15 percent of the scientists in our sample work at non-profit research laboratories or
private companies.

2.2 The Protein Data Bank

We focus on structural biology because the Protein Data Bank (PDB) contains detailed, organized, and
comprehensive project-level data that is publicly available. The PDB is a worldwide repository of biological
macromolecule structures, 95 percent of which are proteins.5 The PDB was established in 1971 at Brookhaven

4The 2013 Supreme Court ruling on the Association for Molecular Pathology versus Myriad Genetics Inc. case precludes
patents on naturally occurring products such as proteins, genes, and bacteria in the United States. However, even prior to this
ruling, patents on the 3D structure of proteins were rare and difficult to obtain (Seide and Russo, 2002; Shimbo et al., 2004).

5The remaining types of molecules in the PDB are DNA, RNA, or a complex of protein, DNA, and/or RNA.
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National Laboratories, with just seven structures. Today, the PDB contains over 150,000 macromolecule
structures, and is growing at a rate of about ten percent annually (Berman et al. 2000; Burley et al. 2019).

The PDB spent many decades trying to actively encourage contribution and overcome norms of secre-
tiveness that had been pervasive in the field of crystallography. Researchers are encouraged (and in some
cases required) by the PDB to disclose experimental details, methodology, atomic coordinates describing
the structural model, and raw experimental data if possible. Crystallographers are particularly tight-lipped
about their research progress because each project represents a huge investment of time and resources. Once
results are produced, they are easy to imitate and highly useful to competing scientists working on similar
or related projects (Strasser, 2019). There was an obvious public benefit for systematic contribution of
discoveries in the PDB, particularly for comparative modeling and survey research, but there were very low
private incentives for participation (Hill, Stein and Williams, 2020). In early days, the small community
of crystallographers was able to maintain an honor system that discouraged encroaching on projects known
to be in progress, but this norm broke down as the field grew in size and competitiveness (Ramakrishnan,
2018). For many years, the PDB used a variety of schemes to try to encourage community participation and
data sharing, including direct solicitation, public cajoling, and even prize drawings (Strasser, 2019). How-
ever, since the early 1990s, the majority of scientific journals have required that any published structures
be deposited in the PDB (Barinaga 1989; Berman et al. 2000, 2016). Furthermore, in 1998, top journals
including Science, Nature, and PNAS formalized a policy to ensure simultaneous release of academic papers
and PDB details (Campbell 1998; Sussman 1998) as encouraged by the PDB and the International Union of
Crystallography.

Because of these strict public disclosure policies, we believe the PDB represents a near-complete census
of macromolecule structure discoveries. Whenever a structural biologist completes a project, she uploads
the structure, experiment, and discovery details to the PDB. This typically happens shortly before or after
she submits an academic paper describing her findings for publication. An important feature of this process
is that the uploaded data is confidential. No other user of the PDB can access the data or see that the
deposit has been created. Even the editor and reviewers only receive a receipt of deposit from the PDB and
author, and they do not see the underlying structure data until the date of publication. Only at the point
of publication is the data released to the public. If any project goes unpublished, the data is released by
default after one year (wwPDB 2019).

The primary unit of analysis in the PDB is a structure deposit, which is a unique report about the
determination of a single protein by one research lab. Each structure is assigned a unique ID. For example,
PDB ID 4HHB, deposited in 1984, is the structure of human deoxyhemoglobin, the form of hemoglobin
without oxygen which is the predominant protein in red blood cells (Fermi et al. 1984).

The PDB provides three key pieces of information that we will use in our analysis. The first is a measure
of similarity between proteins. This is calculated by comparing how similar a protein’s amino acid chain
is to other proteins in the PDB. For a given protein, the PDB uses an algorithm to construct a list of
other proteins that are 100 percent similar, 90 percent similar, etc., all the way down to 30 percent similar.
These groupings, or “clusters,” allow us to determine whether two structure deposits from different teams
correspond to the same or very similar protein. The second key piece of information the PDB provides is
a list of dates for the structure deposit, including when the data was deposited and when it was released.
This allows us to construct a timeline for the projects and identify cases when two or more teams were
working simultaneously on the same protein. Finally, each PDB structure is linked to the academic paper
that the structure was published in (if any). This link includes the PubMed ID, which we link to PubMed

7



bibliographic data and Web of Science citation data.

2.3 Identifying Priority Races: Challenges and Solutions

Identifying priority races in scientific data is difficult for three reasons. First, questions should be well-defined
and have a common approach to solving the problem. To underscore the importance of this requirement,
consider economics, a field where this is not the case. There are many papers on the same topic or question
(e.g., what is the effect of raising the minimum wage on employment?), which are often published in close
succession (for example, Jardim et al. 2018 and Cengiz et al. 2019). And yet, because there are a variety
of methods, settings, and approaches, these papers may be quite distinct. Therefore, the first paper to
be published does not necessarily “scoop” subsequent papers that aim to answer the same question. For
our purposes, we need a field where the questions are tightly defined with a common approach, a feature
that seems more common in the hard sciences than the social sciences. The second challenge is identifying
papers that answer the same question. Manually comparing papers to decide whether they address the same
question is infeasible at scale. Ideally, we would have some objective measure of scientific proximity, which
can tell us whether two teams are working on the identical problem. Finally, the third challenge is that
scooped papers are often abandoned without publication. If authors abandon their projects when they see
that a similar paper has been published, many scooped papers will never show up in bibliographic data.

The PDB enables us to make significant progress on these three obstacles. First, the questions in struc-
tural biology are well-defined, because scientists are typically trying to solve the structure of a known protein.
Moreover, the methods are consistent: 87 percent of proteins are solved using x-ray crystallography. This
means that if we observe two papers that study the structure of the same protein, these two papers are
likely to be very similar in terms of the question, methods, and conclusions. Second, as mentioned in Section
2.2, the PDB measures how biologically similar different proteins are to one another. This allows us to link
projects based on objective measures of scientific proximity rather than text similarity or citation behavior.
Finally, scientists are required to deposit their structures in the PDB prior to publication. This gives us the
ability to observe some projects that never reach publication. Given that scientists might abandon projects
that get scooped, having this record of unpublished projects is a key feature of our data. We will discuss
the timeline in more detail in the next section. To the best of our knowledge, we are the first to measure
scientific races in a data-driven manner.6

2.4 Defining Priority Races

Broadly speaking, we define a priority race as an instance where two or more teams are working on the
same protein independently and concurrently and are likely uncertain about the identity or progress of their
competitors. Following Brown and Ramaswamy (2007), we define “same protein” as meaning two proteins
within the same 50 percent or higher sequence similarity group (called a “cluster” in the PDB). This is a
conservative cutoff, as 30 percent has been suggested as sufficient similarity for building homology models
(Dessailly et al. 2009; Moult 2005). In other words, the first deposit within these 50 percent similarity
clusters are highly cited because they provide a novel structure model that other crystallographers can build

6Thompson and Kuhn (2020) are able to identify patent applications that were engaged in a patent race by finding patents
that were rejected for lack of novelty. Bikard (2020) identifies paper “twins” using papers that are frequently co-cited, but this
approach precludes cases where one team captured the outsized share of citations by construction, or cases where a project is
abandoned.
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on to solve very similar proteins.7 The PDB assigns ID numbers to clusters of similar proteins, and we say
that the first deposit released in that cluster is the “priority” deposit. There are often many subsequent
deposits that report similar structure coordinates as the priority deposit. These follow-on deposits are either
scooped projects, replication projects of the same protein by future teams, or new projects that solve the
structure for closely related proteins from different organisms or bonded with different macromolecules in a
novel way.8

We use the timing to determine whether a follow-on deposit qualifies as scooped by the priority deposit.
The PDB provides two key dates at the structure level that outline the timeline of each project and help
us determine whether two teams are working concurrently: the deposit date and release date.9 The deposit
date corresponds to the date that the scientist uploaded her solved structure to the PDB. Importantly, the
structure is not yet visible to the public. Nearly all scientific journals require that authors upload their
structures to the PDB prior to publication, so deposit typically occurs slightly before or after the date that
the scientist first submitted their paper. The release date is the date that the PDB deposit is made public.
This typically corresponds to the publication date. In cases where the structure is never published, the PDB
releases the deposit by default one year after the deposit date. Figure 1 provides a visual timeline of these
dates, as well as some summary statistics. Throughout this analysis we will always use the release date as the
relevant marker of priority. An alternative approach would be to use paper publication dates to determine
priority ordering. But these dates are often unavailable, especially for older publications, or are ambiguous
in recent data because online publication may come before print edition publication. Further, we treat
publication as an outcome variable, leading to potential bias if we condition on publication as a requirement
for treatment assignment. Lastly, PDB releases are publicly salient dates that the community pays attention
to and are therefore good markers of priority order. Appendix Section A.4 discusses implications and presents
evidence about the concordance between release dates and publication dates in greater detail.

Figure 2 illustrates how we define a scoop event. Consider two projects, A and B, authored by two
distinct teams working on the same protein. Suppose project A is a priority project in one of the similarity
clusters. We say that project A scoops project B if (i) A is released before B is released, but (ii) after B has
deposited to the PDB. Condition (i) guarantees that A finishes first, while condition (ii) guarantees that B

did not know about A until after the structure was deposited in the PDB. Since B had already deposited
a completed structure, they likely would have been the priority deposit had they not been scooped by A.
Requiring that B has deposited before A is released ensures that we observe abandoned projects, since all
deposited structures appear in our data even if they are scooped and fail to publish. We allow the priority
project to scoop more than one team, and 5.6 percent of the races we identify have three or more competitors.
Appendix Section B provides a more detailed description of the data work necessary to construct these races
in practice. In our main analysis, we exclusively focus on these clean, but narrowly defined scoops that occur
after B has already deposited. However, in Section 5 we expand our analysis to include earlier-stage scoops,
that occur before B deposits.

7Appendix Figures A1 and A2 provide evidence that at each level of similarity above 50 percent, paper pairs in our sample
have very similar titles and are have similar rates of citation between the scooped and winning paper. For robustness, we can
restrict to scoops by proteins within the same 100 percent cluster, and find similar results which we report in Appendix Table
A5. If a protein is scooped by more than one other protein, we give preference to the protein that is biologically closer (i.e. in
the “higher” cluster). See Appendix B for details on the data construction.

8For example, there are 30,153 clusters of proteins in the PDB that are 50 percent similar, and each cluster has an average
of six deposits, only some of which are eligible to be considered racing according to our definition.

9The scientists also report a collection date, which is the date the scientist took her crystals to the synchrotron and collected
her experimental data. Typically deposit occurs about one to two years after collection.
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2.4.1 An Example

To help understand our procedure, consider an example outlined in Table 1. The table shows two structures:
4JWS and 3W9C. Both are structures of the Cytochrome P450cam protein complexed with its redox partner,
putidaredoxin (Pdx-P450cam complex). This enzyme is involved in metabolism and clearing toxins, such as
in the human liver. Figure 3 shows the nearly identical biological assembly models that each team deposited
independently and confidentially to the PDB. The scientists at Leiden University (3W9C) collected their
data a few months before the scientists at University of California, Irvine (4JWS) (February 3, 2012 versus
September 14, 2012). However, by the time of deposit, the UC Irvine team had pulled ahead, depositing
one week before the Leiden team (March 27, 2013 versus April 3, 2013). Ultimately, UC Irvine won the
priority race, with their structure being released two months before Leiden (June 19, 2013 versus August 21,
2013). Importantly, when Leiden deposited their structure on April 3, 2013, UC Irvine had not yet released
their structure. This means that Leiden was likely unaware of their competitor’s progress or results when
they were preparing their publication and depositing the structure. Comparing the outcomes of the winner
(4JWS) and the loser (3W9C), we observe that the winning paper was more successful. It was published
in a better journal (Science, with an impact factor of 31.5 versus Journal of Molecular Biology, with an
impact factor of 4.0) and received about 30 percent more citations over the next five years (Tripathi et al.
2013; Hiruma et al. 2013). In this case, the Leiden authors became aware that they were scooped during
the manuscript review. In the conclusion of their paper, they write, “While this manuscript was under
review, Tripathi et al. published the crystal structure of the Pdx–P450cam complex that was obtained via
cross-linking of the two proteins. It is interesting to compare our complex with those reported in that study.
Tripathi et al. found a position and orientation of Pdx relative to P450cam that is essentially identical with
ours.” (Hiruma et al. 2013)10

2.4.2 Additional Sample Restrictions

We make three further restrictions to minimize cases of ambiguity in the race construction procedure. First,
we drop some proteins that are exceedingly complex. Some very large proteins are composed of many
entities that are sometimes solved piece by piece over many years instead of all at once. This introduces the
possibility that a scientist could be scooped on only a fraction of their project.11 Second, we drop projects
that are published in a paper that is linked to 15 or more other structures. Among the set of papers included
in our final analysis sample, 46 percent are linked to more than one structure, and the average number of
structures per paper is 1.9. Multi-structure papers are at risk of being scooped on a fraction of the full
project. This restriction allows for some fractional scoops to enter our data, but ignores papers where each
protein becomes a very small fraction of the full contribution of the paper. Finally, we drop races that end
in a near or exact tie. Occasionally, two racing papers will be submitted to the same journal and the editor
will publish them as companion pieces in the same issue, and we drop these cases. We also drop races where
the two papers were released closer than two weeks apart from each other. We make this restriction to
help ensure that the first project has a clear claim of priority and that the order of release is more likely to

10Overall, 33 percent of the scooped papers in our sample directly cite the winning paper. The probability that this citation
occurs increases with a larger gap in time between publication. For scooped projects that are released less than one month
after the winner, fewer than 14 percent cite the winning paper. That probability increases to 64 percent for races with more
than an eight month gap between release dates. See Appendix Figure A3.

11Proteins are often composed of sub-units called entities. The clustering algorithm in the PDB groups similar molecules at
the entity level, not the structure level. Therefore we define clear rules for dealing with proteins that are scooped on more than
one of their constituent entities. We also drop projects with 15 or more entities because of exceeding complexity. Appendix
Section B describes in more detail how we deal with multi-entity structures in the data.
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correspond to the order of publication.12

2.5 Additional Data Sources

This section describes the additional data sources that we use to define outcome variables, control variables,
and provide further details about our setting. Additional details on data sources can be found in Appendix
A.

Journal Citation Reports Journal Citation Reports is an annual report published by Clarivate Analytics
that evaluates journal influence using a metric called “journal impact factor.” Let Citesjt,t−k be the number
of citations that journal j received in year t for articles written in year t− k. Let Articlesjt−k be the number
of articles published by journal j in year t− k. Then journal j’s impact factor in year t is given by:

JIF j
t =

Citesjt,t−1 + Citesjt,t−2

Articlesjt−1 +Articlesjt−2

. (1)

In words, the journal impact factor attempts to capture a journal’s rolling average citations per article. We
standardize the impact factors within a year t to account for the fact that impact factors have been rising
over time as the rate of publishing within the life sciences has increased. We also use the journal impact
factor to create a list of “top-10 journals.” In order to focus on journals that are both high impact and also
relevant to structural biology, we restrict to a potential list of the 30 journals with the most PDB linkages
in each half decade. That set is then restricted to the 10 highest impact journals in each five-year span. The
list contains top-ranked general interest journals as well as top-ranked life science journals.13

PubMed, Author-ity, and Web of Science The Web of Science is a database of over 73 million
scientific publications written since 1900 which are linked to their respective citations. The data are owned
and maintained by Clarivate Analytics. We link the PDB to the Web of Science using PubMed identifiers,
which are unique IDs assigned to research papers in the medical and life sciences by the National Library
of Medicine. We use these data to compute citation counts for PDB-linked papers. Our primary outcome
is citations in the five years following publication, excluding self-citations. We also construct a measure of
whether a structure was published in a “hit” paper by ranking PDB articles by five-year citation counts and
marking the top 10 percent with the highest citation counts within years. The version of the Web of Science
that we use ends in 2018, therefore we restrict the regression samples for these outcomes to 1999-2013 to
allow for time for publications to accrue citations we can observe.

We construct career histories of variables before and after the priority date of each race to serve as
control variables and long-run outcomes. Reconstructing publication records for individual authors is difficult
because names are not disambiguated in the PubMed or PDB. We use a dataset called Author-ity, which
groups PubMed IDs into distinct author identifiers using co-author and topic patterns (Torvik et al. 2005;
Torvik and Smalheiser 2009). However, because not all PDB deposits are published, it is hard to link
unpublished deposits to the correct name identity in Author-ity. Therefore, in the long-run results section,

12The PDB only releases structures once per week, which can also make very close scoops ambiguous in terms of which truly
came first. Our two week restriction helps eliminate these cases but has a minimal impact on our results. See Appendix Section
A.4 for more details on the correspondence between the PDB release date and publication date.

13Top-ten journals in 2017: Nature, Science, Cell, Journal of the American Chemical Society, Nature Chemical Biology, Na-
ture Structural and Molecular Biology, Nature Communications, Angewandte Chemie, Nucleic Acids Research, and Proceedings
of the National Academy of Sciences.
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we restrict to a subset of authors that have uncommon names and uniquely match to an individual in Author-
ity. We also use simple name-matching techniques within the PDB to construct control variables of team
productivity prior to treatment, which we can do for all deposits including those that are not published. We
describe the name disambiguation procedures in detail in Appendix A.6.

For long-run outcomes, we count PubMed publications, PDB-linked publications, top-10 publications,
citation-weighted publications, and “hit” publications for the years following the treatment date. Besides
analyzing the effects of race outcomes on the intensive margin of publication, we also consider the extensive
margin of exit from publishing PubMed papers and PDB-linked papers altogether.

QS World University Rankings We use information about the affiliation ranking of the PDB scientists
as control variables and to predict their academic reputation. The QS World University Rankings is an
annual publication that globally ranks universities both overall and within subjects. We use the 2018 life
sciences and medicine rankings, as this field is the most relevant to our setting. The ranking methodology
combines four sources: a global survey of academics (academic reputation), a global survey of employers
(employer reputation), citations per paper, and faculty h-index values. These four sources are aggregated to
create a total score which is used to rank the 500 best universities.

Editorial Dates In Section 4.3, we analyze how the scoop penalty is affected by the timing of the scoop
event relative to the journal review and publication timeline. We supplement our data with the received,
accepted, and publication dates for papers published in journals owned by a handful of large publishers.
While we were not able to obtain these dates for all articles, we chose to focus on journals based on their
prevalence in the PDB and the availability of the data for download. The journals included in the subsample
are flagship or field journals from the following journal groups: Science, Nature Journals, Cell Press, and
Public Library of Science (PLOS). This subsample covers 24 percent of our primary regression sample.

Scientist Survey In order to benchmark the magnitudes of our findings, we surveyed structural biologists
about their perceptions of the probability and costs of getting scooped. Email surveys were conducted in
September of 2019. We collected email addresses from the Web of Science, which provides a contact email
for many of the corresponding authors on academic publications. The recruitment sample was defined as
any corresponding author on a PDB-linked publication from 2014-2019 that had an email address available
in the Web of Science files. We sent recruitment emails to 8,984 unique email addresses, and encouraged
respondents to participate on a volunteer basis. We received 915 responses, for a total response rate of 10.2
percent. Each potential recruit received one initial solicitation and two follow-up reminders to complete the
survey. Relevant text of the questionnaire is provided in Appendix D.

2.6 Summary Statistics

By identifying priority races, we effectively split the PDB into two mutually exclusive groups: structures
involved in a priority race (the “racing sample”) and structures not involved in a priority race (the “non-racing”
sample). Table 2 shows summary statistics at the structure level for both of these samples. Just over five
percent of the structures in our sample are involved in a priority race. We look at both team characteristics
and deposit outcomes. Teams involved in priority races tend to be smaller, younger, and more likely to
come from a top university. The racing scientists were also more likely to work in Asia, and less likely in
North America. The deposit outcomes suggest that proteins involved in priority races are scientifically more
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important. Proteins in the racing sample are more likely to be published, appear in higher-ranked journals,
and receive more citations.

3 Empirical Design

The analysis is designed to identify the causal effect of getting scooped on the short-term success of the project
(publication, journal placement, and citations), as well as on subsequent academic success of the scooped
authors. We estimate the difference in outcomes between the winners and losers of the priority races in the
PDB. In an ideal setting for causal inference, the winners and losers would be randomly assigned. In reality,
the outcome of these late-stage races is not exactly random, but is highly unpredictable. We present evidence
that although some characteristics of the teams are correlated with winning a race, these observables can
only explain very small differences in outcomes. In this section, we present the main estimating equations
of our analysis, describe and test for potential sources of bias, and explain the control selection strategy we
use to deal with potential selection bias.

3.1 Baseline Specification

Equation 2 presents the basic specification for the project-level regressions. For deposit i studying protein
p, we estimate

Yip = α+ βScoopedip +X′
ipδ + γp + ϵip (2)

where Yip is an outcome, such as publication, journal impact factor, or citations. Scoopedip is an indicator
for losing a priority race, Xip is a vector of covariates, and γp is a protein (i.e. race) fixed effect.14 The main
coefficient of interest is β, which identifies the scoop penalty. All standard errors are clustered at the protein
level. Our identifying assumption is that Scoopedip is uncorrelated with the error term once we condition
on observable covariates and the protein involved in the priority race.

In Section 4.2, we consider the long-run effect of getting scooped on academic career outcomes. The
regression specification is similar to equation 2, but the unit of observation is a scientist, rather than a
project. For scientist s who co-authored deposit i that was in a priority race over protein p, we estimate

Yisp = α+ βScoopedisp +X′
ispδ + γp + ϵisp (3)

where Scoopedisp is a dummy equal to one if scientist s was scooped on project i. Xisp is a vector of scientist-
project covariates, such as the number of publications accumulated by scientist s in the five years before the
priority date associated with project i. We also include cubic controls for career age, which is defined as the
number of years since the author’s first publication in the PDB, as well as the university rank of the first
author affiliation and the continent where the first author is located.15 Again, γp is a protein fixed effect.
The long-run outcomes are calculated as the sum of each outcome in the five years following the priority
date. Importantly, we exclude the publication that is linked to the structure ID of the PDB projects that

14The main econometric justification to include protein fixed effects is that we have a small number of races with more than
one scooped team (i.e., some races involve three teams: one winner and two losers). To the extent that these races differ from
the standard two-team races in some unobserved way, there will be a mechanical correlation between losing the race and that
unobserved factor, because in races with more than two teams, there are multiple losers but only a single winner. Including
race fixed effects is an efficient way to non-parametrically control for this potential omitted variables bias.

15Affiliations and locations are sourced from PubMed. 22 percent of structures have missing data because of non-publication
or missing affiliation reported by the publishing journal.
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were involved in the race. These outcomes therefore represent productivity in other projects not including
the winning or losing paper in each race. Although each scientist may win or lose races multiple times, we
include each appearance as a separate treatment event, and consider the subsequent outcomes for all scoop
events.

3.2 Identification and Balance

Comparing outcomes of winners and losers of the PDB races identifies the causal effect of getting scooped
if the race ordering is as good as randomly assigned. There are many reasons a team might win or lose a
priority race, and it is plausible that the order of completion is somewhat idiosyncratic. The randomness of
the scientific process, day-to-day operation of scientific labs, and the vagaries of the journal review process
leave ample opportunity for random chance to dictate the timing of these races. Anecdotal accounts of
ill-timed personnel issues, lab accidents, or unlucky experiment failures suggest that the timing of project
completion is oftentimes out of the hands of even the most diligent and skilled scientist (Ramakrishnan,
2018; Yong, 2018). Furthermore, after the deposit date and submission of a manuscript, the scientist has
very little discretion over the timing of the review process, which may be delayed by editor preference,
reviewer inattention, or publisher congestion. Moreover, scientists typically have little information about
the identities or progress of their competitors.

On the other hand, skill, experience, or resources could provide an advantage to certain teams that would
allow them to systematically start earlier or work faster and therefore win priority races. This is a threat
to identification because these characteristics may simultaneously increase the probability of winning and
improve project outcomes. For example, suppose a technological breakthrough marks the starting point of
a race that many diverse teams enter. If one team from Harvard has exceptional resources to adopt the
technology and complete the project first, we will observe them win the race and receive many citations.
But since Harvard is a high-reputation university and has a track record of success, they would likely have
high citations even in the counterfactual where their competitor won the race. Therefore, we rely on the
assumption that well-resourced or otherwise high-reputation teams are not able to systematically win priority
races, and we test this using observable characteristics of each team.

If winning a priority race is random, then winning and losing teams should look balanced based on
observables. We assess this observed balance between winners and losers in Table 3. Using the information
disclosed by the teams in the PDB, we inspect a variety of observable characteristics that might reasonably
be correlated with the probability of treatment or with outcomes. These include the number of authors, the
location of the lab, the rank of the university affiliation, and the experience in years of the first and last
authors. We also calculate measures of the authors’ productivity in PDB-related publications in the five
years prior to the racing deposits. These include the number of PDB deposits, publications, and publications
in top-ranked journals.16

Table 3 shows the mean values of each covariate for the winning and losing teams, as well as for the teams
in the non-racing sample, for reference. We report test statistics for the difference in means between the
winning and losing teams, as well as an F-statistic for a test of joint significance of all covariates. We find that
many of the covariates are balanced between the winning and losing teams. But winning and losing teams are
statistically different in a few notable dimensions. North American and European teams are more likely to
win than lose, while Asian teams are more likely to lose than win. Scientists from top-50 ranked universities

16We do not use citations accrued to the racing papers because many of those citations would be assigned after the treatment
date of the priority races and could therefore be endogenous to the outcome of the race.
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are more likely to win, as well as first and last authors with slightly less experience. The prior productivity
of these labs is more balanced, with most measures of productivity being statistically insignificant for both
first and last authors (though winning first authors appear to have deposited more). We also test whether
the scientific results that are being deposited by both teams are similar. Refinement resolution and R-free
are two variables reported by the PDB that describe the objective quality of the experimental data and
model in each deposit. Resolution describes the degree of precision in the diffraction data produced during
crystallography experiments, and R-free measures the goodness-of-fit between the experimental data and
the proposed structure model. For both of these measures, smaller values imply better quality. These two
measures are very close to balanced between winners and losers, suggesting that the quality of the science
or the skill of the scientists is likely not driving our results. Taking the table as a whole, we reject the null
hypothesis of balance on the full battery of covariates based on an F-statistic of 3.96.

Unbalanced covariates lead to biased estimates only if they are systematically correlated with the outcome
variable. Therefore, to further assess potential selection bias, we visually inspect the difference in expected
citations between winners and losers. We estimate a paper-level model of citations using a Lasso17 regression
of three-year citation counts on the battery of team covariates. This model is estimated only in the sample
of non-racing deposits. We then take the selected variables and estimated coefficients to predict citations
in the racing sample in a post-Lasso OLS procedure. The covariates we include are counts of publications,
citations, and journal placements in the five years prior to the deposit for the first and last author, as well
as the squares of these variables. We also use the career age of the first and last authors, the rank of the
first author’s institution in ten-school bins, and the country and university of the first author. The Lasso
model selects many of the variables one would expect to be important, including dummies for being in the
US, and dummies for university rank. The full Lasso results are reported in Appendix Table A1.

Figure 4 plots a histogram of the difference in predicted citations between each pair of winning and losing
teams (races with three or more teams are omitted here). A perfectly balanced sample would be centered
around zero and symmetric. If winners were systematically better-resourced, higher reputation, or more
experienced, then the histogram would be skewed to the right. As a benchmark for perfect balance, we
compare this distribution to a simulated distribution where we randomly assign one of the paired teams as
the winner. We simulate this coin flip 100 times per pair. The true distribution is shifted slightly to the right
of the randomly simulated distribution, suggesting that winners are slightly more likely to be high-reputation
than would be predicted by chance. But the differences in the distribution are small. The difference in means
between the two distributions is 0.66 predicted citations with a p-value of 0.076 (for reference, the sample
average is about 13 citations, so this represents a 5 percent difference). This slight lack of balance motivates
our control strategy discussed in the next section.

3.3 Control Selection Using Post-double-selection Lasso

In light of potential treatment imbalance, we rely on an identification assumption that treatment is exogenous
conditional on observable control variables. There are many potential control variables in our data, so we
use a method called post-double-selection Lasso (PDS-Lasso) proposed by Belloni et al. (2014) to optimally
select controls variables. Consider a partially linear model similar to equation 2

Yip = α+ βScoopedip + g(Zip) + γp + ϵip (4)
17Least Absolute Shrinkage and Selection Operator (Tibshirani 1996).
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where Zip is a large set of control variables. Assume that ϵip satisfies an exogeneity assumption such that
the treatment is mean independent of ϵip conditional on controls. Then β will be consistently estimated if
we can control for a sufficiently good approximation of g(Zip). Rather than relying on an ad hoc procedure
to choose controls, PDS-Lasso offers a robust approach to estimation and inference for β.

The PDS-Lasso method uses two steps. First, it estimates a Lasso regression of Scoopedip on Zip to select
a set of regressors that are predictive of treatment. Then it uses a second Lasso regression of Yip on Zip

to select regressors that are predictive of the dependent variable. The selected control variables are highly
informative of treatment assignment and outcomes, and therefore reduce bias in estimation. The superset
of selected regressors from those two regressions are used as the control variables in a post-OLS regression
of Yip on Scoopedip. The potential set of regressors we use are the variables in the balance Table 3 as well
as squares of those variables and university rank binned into 10 school dummies. The protein fixed effects
γp are included as unpenalized regressors in all steps of the method.

4 Results

4.1 Short-run Effect on Projects

Table 4 reports the regression results for the project-level effect of getting scooped. We focus on five
primary outcomes: (1) an indicator for whether the project was published, (2) the journal impact factor
(standardized within year) (3) an indicator for publishing in a top-10 journal as measured by impact factor,
(4) total citations accrued in five years, transformed with the inverse hyperbolic sine function,18 and (5)
an indicator for becoming one of the top 10 percent of publications measured by five-year citation counts.
Not all projects are published, and if they are, they may not be published in a ranked journal. We count
unpublished papers as having zero citations. If the project is not published in a ranked journal, we impute
the impact factor of their publications as being equivalent to the minimum journal ranking in the regression
sample. The sample is restricted in columns 4 and 5 to projects released before 2014 to allow a full five
years of data coverage to count citations in that window before our citation data ends in 2018. We present
regression results from three different specifications. Panel A shows the results from a simplified version of
equation 2 with no control variables. Panel B adds all controls listed in Table 3, and panel C uses controls
selected from the PDS-Lasso procedure described in Section 3.3. The results across all five outcomes suggest
that covariates have very little impact on the coefficients between panel A and panel C, assuaging concerns
about omitted variables bias. We will use panel C as the preferred specification to report our estimates
throughout the paper. To further test for selection bias on unobservables, we implement a robustness check
following Oster (2019) in Appendix Table A2.19

Scooped projects are 2.6 percentage points less likely to be published off of a baseline publication rate for
winning projects of 88 percent. This represents a 3 percent decrease in probability of publishing, or framed

18The inverse hyperbolic sine transform is a standard way of dealing with a right-skewed distribution that has ze-
roes and/or negative numbers (Burbidge et al. 1988; Bellemare and Wichman 2019). The transformation is given by
asinh(x) = log

(
x+

√
x2 + 1

)
. The coefficients on variables transformed by the hyperbolic sine function can be interpreted

similarly to logs (i.e. proportionally).
19Adding controls and protein fixed effects increases the R2 from less than 0.01 to over 0.60 in all regressions, suggesting

that most of the variance in the outcome is explained by treatment and observable controls. Implementing the suggested bias
adjustment, we conservatively assume a maximum R2 = 1 and δ = 1 (unobservables are equally important for treatment
selection as observables), and find that the adjusted coefficients are almost identical to our baseline findings. Further, the δ
needed to reduce the estimate to zero is greater than 7 in all specifications, meaning there would need to be an unrealistic
degree of selection on unobservables to threaten the robustness of the results.
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differently, a 20 percent increase in the probability of abandoning the project. This modest discouragement
rate is likely driven by the low cost of publishing once the project has already been deposited in the PDB
(recall that in our sample, all scooped projects have already been deposited in the PDB when they learn that
they have been scooped). In many cases, the scooped teams may be well into their submission and revision
process at the time of being scooped, and therefore will persist to publication. Even if they are rejected
from a journal, there are many lower-ranked outlets that may be more willing to accept scooped papers, a
mechanism we explore in Section 4.3.

In column 2, we estimate a statistically significant penalty in journal impact factor. Scooped papers are
published in journals with impact factors 0.19 standard deviations below winning papers. In column 3, this
translates to a 6 percentage point (20 percent) decrease in the probability of publishing in a top-ten journal.
Column 4 shows that scooped papers face a significant citation penalty as well. The winning projects receive
29 citations on average in the first five years. The scooped projects receive 21 percent fewer citations in
the same time span. Column 5 suggests that this means scooped projects are 3.6 percentage points (24
percent) less likely to be one of the top 10 percent of papers in that publication year ranked by five-year
citations. These results are robust to a variety of cutoffs, including a shorter or longer citation window and
different percentiles for the high-citation mark (see Appendix Table A3). Appendix Table A4 shows results
are robust to the exclusion of protein (i.e., race) fixed effects. As a further robustness check, we reproduce
the regressions using a sub-sample of races that have projects with 100 percent similar sequence structure
according to the algorithm used by the PDB. Appendix Table A5 shows that the magnitudes are very similar
for all outcomes, even if statistical precision is lower due to the smaller sample size.

Scooped projects may not only be penalized in terms of journal placement and citations, but also by
less formal means of recognition, such as reader downloads, coverage in the scientific press, and mentions on
social media. Scientists value these interactions as they build standing and reputation in both the academic
community and general public. Appendix Table A6 shows results of project-level regressions using outcomes
sourced from Altmetric.com. We find that getting scooped has statistically significant negative effects on
downloads, news mentions, Wikipedia citations, patent citations, and Twitter mentions.

Taken together, these results suggest that there is a significant penalty for being scooped, both in the
likelihood of publication, the journal rank of publication, and the number of citations accrued in the early
life cycle. However, these results also indicate that the rewards for priority are not winner-take-all. Losing
teams receive a smaller, but still substantial share of the credit as measured by publication and citations.
Translating the citation penalty to shares of total citations, losing projects receive approximately 44 percent
of the total citations accrued to both papers, a much larger share of credit than zero percent for the winner
as is typically assumed by classic models of innovation races.20

4.2 Long-run Effect on Authors

In this section we analyze the long-run consequences of being scooped on the careers of the various authors of
scooped papers following equation 3. Table 5 reports the results of the long-run outcomes regression. Panel
A contains results for regressions in the full sample of authors. Panel B restricts to novices only, which are
defined as authors who had seven years or less since their first publication at the time of the scoop event.21

20The estimated share of 44 percent is calculated by dividing the mean citations of the losing teams, 28.8 ∗ (1− 0.208) by the
implied total citations (28.8 + 28.8 ∗ (1− .208)) based on the estimate of the percent citation penalty from column 4, panel C.

21Seven years is the 30th percentile of the distribution of years since first publication.
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Panel C restricts to veterans, which are all scientists not defined as novices.22

Getting scooped has a statistically significant negative effect on the probability of publishing any subse-
quent articles in the PDB and PubMed in the five years after the race (not including the paper linked to
the focal PDB deposits). Column 1 shows that novice scientists that get scooped are 12 percent less likely
to have any subsequent PubMed publications and 11 percent less likely to publish any PDB-linked paper
in the next five years. Although there is not an economically significant negative effect on the extensive
margin for veterans in the PubMed data broadly (the estimated effect is less than one percent), veterans are
five percent less likely to publish PDB-linked articles after being scooped. Although veteran careers appear
more resilient to being scooped than novice careers, it is possible that getting scooped might encourage some
scientists to steer away from the PDB in the future.

Despite a significant extensive margin effect, we find no significant changes to publication counts on
the intensive margin for novices or veterans. Losing teams have no statistically significant differences in
publications or PDB-linked publications in the following years as shown in column 3 and 4, and they are
not more or less likely to publish in top-10 journals. This difference in intensive and extensive margin
effects might mirror a similar dynamic documented by Wang, Jones and Wang (2019), where scientists
that persevere through setbacks (in their case being denied a grant), do not experience negative productivity
effects in the long run (perhaps due to grit or psychological persistence). However, we do estimate significant
penalties in citations for all categories of authors. In the full author sample, the scooped individuals receive
17 percent fewer citations (measured by inverse hyperbolic sine citation-weighted publications) in the next
five years, where citations are counted up to three years after each paper’s publication. This effect falls
particularly hard on novices, who receive 32 percent fewer citations, while veterans receive only 13 percent
fewer citations. The effect on “hit” papers is reported in column 7 and also suggests that getting scooped
decreases attention to future work. The full sample of scientists publish 0.42 fewer hit papers in the five
years following a scoop event. The negative effect is lower for novices in levels (0.10 papers versus 0.58 papers
for veterans), and not statistically significant for novices. However, if we scale the effect size by the average
number of hit papers, the effect is larger for novices (an eight percent decline versus a six percent decline).
We also consider outcomes in the following three years in Appendix Table A7 and ten years in Appendix
Table A8. The results are similar in the three year window, but are smaller and imprecise after 10 years,
in part because we restrict to a smaller balanced sample of races that ended before the last ten years of
our sample window. Lastly in Appendix Table A9, we restrict to first, middle, and last authors separately
because first and last authors are considered to have a larger reputation stake in life science papers, but we
find broadly similar effects for all types of authors.

4.3 Mechanisms: Role of Scoop Timing in the Publication Process

Scooped projects receive about 21 percent fewer citations than their winning counterparts, suggesting that
academic researchers pay less attention to the projects that are scooped. In this section, we investigate how
the editorial process affects the scoop penalty, and we argue that journal placement is a primary driver of
the citation penalty. Further, the size of the penalty is highly correlated with the timing of races. Teams
that are scooped early (very shortly after they deposit their findings) receive a much larger penalty than
teams that are scooped late (shortly before publication). We provide evidence that top journal editors are

22The sum of the sample sizes in panels B and C is smaller than the sample size in panel A because the race fixed effects
specification in practice restricts identification to races that have at least one novice (or veteran) in the winning and losing
team of each race.
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unlikely to accept scooped papers, therefore scooped papers consistently fall to lower-ranked journals unless
they were deep into the review process at the time they were scooped. These results suggest that editors
and reviewers are key policymakers in determining the distribution of academic credit for novel research.

4.3.1 Decomposing the Citation Effect by Journal

First we show that the citation penalty is largely driven by journal placement. We decompose the citation
effect into an editor/reviewer effect and a reader effect by controlling for journal placement. Column 1 of
Table 6 replicates the citation penalty effect from Table 4, column 4, but uses a subsample of races where
both papers were published in ranked journals. When both papers are published, the citation penalty is
17 percent for scooped papers. In columns 2 and 3, we add controls for journal impact factor, first as a
linear term and then as a cubic polynomial. The citation effect falls to 11 percent, but remains statistically
significant. Finally, in column 4 we include journal fixed effects to control completely for any direct effect of
the publication outlet on citations. The effect falls to five percent. These results suggest that at least two
thirds of the citation penalty comes through the channel of the publishing journal. Any remaining effect on
citation attention comes through readers differentially citing winning and losing papers in similar journals.

4.3.2 Editors’ Role in Priority Credit

We further explore the role of editors in adjudicating priority credit by focusing on the submission, review,
and publication timelines of scooped projects submitted to leading science journals. Academic journals
compete fiercely to publish the highest quality and most novel scientific articles. Many of these journals
have explicit policies for accepting only highly original and novel research. For example, Science provides the
following guidelines to peer reviewers: “[R]ecommend in your review whether the paper should be published
in Science and provide a more detailed critique based on the following: ... Novelty: Indicate in your review
if the conclusions are novel or are too similar to work already published.”23 Editors and reviewers therefore
likely drive much of the scoop penalty if they choose to reject scooped papers when they come across their
desk. In this section we look at how the scoop penalty is affected by the timing of journal submissions.
Many of the papers in our sample had already been submitted to a journal when they were scooped, and a
few papers had already been accepted. Even if an editor would prefer to reject a scooped paper, they may
be unable to do so if the paper had already been accepted or was far along in the review process. We use
the supplementary data collected from journal websites to examine how the scoop penalty is affected by the
timing of the review process. Ideally, we would compare the scoop date to rejection dates at leading journals.
But data on rejected papers is not publicly available. Therefore, we instead use the timing of submission
and acceptance to present suggestive evidence that editors at top journals are reticent to publish scooped
papers.

In our data, scooped papers occasionally appear in top journals like Science, Nature, and Cell, but 90
percent of those papers were already under review on the date that they were scooped. Furthermore, about
60 percent of those papers were scooped after they had already been accepted. Figure 5 further shows
that this pattern varies greatly by the impact factor of the journal that eventually publishes the scooped
paper. For lower ranked journals, such as PLOS One, only 60 percent of scooped papers had been received
by the journal on the date they were scooped, and just over 20 percent had been accepted. Among the
11 large journals for which we have information about received and accepted dates, there is a positive and

23See 2019 Science Instructions for Reviewers of Research Articles: https://www.sciencemag.org/sites/default/files/
RAinstr19.pdf
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statistically significant relationship between the share accepted before the scoop date and the impact factor,
with a one standard deviation higher ranked journal being eight percentage points more likely to have already
been accepted on the scoop date. Although we cannot directly observe scooped papers being rejected from
these journals, we can infer from this pattern that top journals are less willing to accept papers that were
scooped before submission or early in the review process. Many of these scooped papers fall to lower ranked
general interest journals or highly specialized structural biology journals.24 Some of these lower-ranked
journals, such as PLOS Biology, have explicit policies of accepting scooped papers. PLOS Biology editors
write, “Just as summiting Everest second is still an incredible achievement, so too, we believe, is the scientific
research resulting from a group who have (perhaps inadvertently) replicated the important findings of another
group. To recognize this, we are formalizing a policy whereby manuscripts that confirm or extend a recently
published study (‘scooped’ manuscripts, also referred to as complementary) are eligible for consideration
at PLOS Biology” (PLOS Biology Staff Editors 2018). But even some lower-ranked journals are concerned
about the fierce competition for novel research. When we approached one publisher about sharing their data
on received and accepted dates, they only offered to provide the data anonymously, stating their concern
about presenting public evidence that they publish scooped papers.

4.3.3 Time Lag and the Scoop Penalty

The severity of the scoop penalty is correlated with the time lag between when the winning and losing
projects are released. In Figure 6, we plot the difference in outcomes separately for three terciles of races
divided by the time between the release dates of the winning and losing projects. The points are placed on
the x-axis at the average delay time within the subset of races. The first panel shows the journal impact
factor penalty and the second panel shows the citation penalty. Both plots have a strong decreasing trend
in the penalty — in other words, the longer the lag between the priority paper and the scooped paper,
the less credit the scooped paper receives. The journal impact factor penalty is 0.1 standard deviations in
the first three to four months, then drops to 0.3 standard deviations by eight months. Similarly, projects
released within one month of each other have no difference in citations. The scoop penalty grows to 50
percent for scooped projects with an eight month delay. In fact, much of the negative effect that we present
in Table 4 is driven by the tercile of races with the longest delays. An important caveat to these results is
that the delay to release after being scooped is potentially endogenous. While much of release lag may be
due to idiosyncrasies of the publication process that are out of the researchers’ hands, teams may also make
strategic decisions to rush to publish, revise and delay, or give up publication altogether, so the delay times
should be viewed as potentially selected on team or project characteristics. We explore some of these forces
in more detail in the next section. These results suggest that the delay time between projects is relevant
for editors and readers, perhaps because the community can more clearly attribute priority credit with more
time separating similar projects.

24One possible strategy a team might consider to win a race is to submit to a lower ranked journal that has a faster average
review time. Indeed we find that top-ranked journals take about 120 days on average from submission to acceptance while lower
ranked journals take about 90 days on average. However, as the results in Table 6 show, the bulk of the scoop penalty is due to
journal placement, suggesting that the citation-maximizing strategy is to submit to the best possible journal first, despite the
potential for a slightly longer review.
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5 Strategic Responses to Getting Scooped Before Project Comple-

tion

Thus far, we have focused exclusively on races where two teams had completed the project before the
knowledge of the scoop is revealed. We chose this restriction because it minimizes the scope for researchers
to endogenously respond to the scoop event. In cases where scientists are scooped after depositing, they
are usually preparing a manuscript or have submitted to a journal already. The PDB also mandates that
the project is released to the public one year after deposition at the latest, and this forced disclosure likely
puts pressure on the team to publish quickly if they have already deposited. Therefore, they have less
flexibility to respond to the scoop event by repositioning their research, changing direction, using insights
from the winning paper, or abandoning the project altogether. This allows us to estimate the impact of
being scooped, all else equal. However, the endogenous response itself is interesting. How do scientists use
the knowledge that they have been scooped to re-optimize? In this section, we compare projects that were
scooped before and after deposit to show how scientists respond when they learn that they have been scooped
before completing the project.

The classic patent race literature has focused on the strategic decisions of a follower in a race for a
discontinuous reward, typically the profits from a patent (Loury, 1979; Lee and Wilde, 1980; Dasgupta and
Stiglitz, 1980; Gilbert and Newbery, 1982; Reinganum, 1983). Depending on the modeling assumptions,
these models predict a range of outcomes: for example, the follower will persist at a steady R&D pace, the
follower will increase effort in an attempt to leapfrog the leader, or the follower will choose to drop out of the
race altogether. The optimal strategy is dependent on the R&D technology, the information structure of the
game, and other features such as whether the race has a single or multiple stages (Fudenberg et al., 1983).
Our setting differs from those models for important reasons, but insights from this literature are relevant for
interpreting scientist behavior in our setting, especially for those scooped before they had deposited.

Like these classic innovation race models, researchers in our setting can choose to accelerate a research
project or abandon it altogether. However, there are other important choice margins in our setting. First,
unlike the models described above, the game does not automatically end when the first team releases their
structure. Instead, the second-place team still has an opportunity to adjust the pace, direction, and scope
of their project. This is more akin to recent patent racing models where races are multi-staged or endless
(Judd, 1985; Aoki, 1991; Doraszelski, 2003; Horner, 2004). Second, early models rarely grappled with the
public goods nature of innovation, where a loser can benefit from the winner’s discovery through imitation
or improvement of the winner’s disclosed discovery (Arrow, 1962; Dasgupta and David, 1994).

In the remainder of this section, we study the strategic decisions of a scientist who is scooped early
enough in the project’s life that she still has an opportunity to re-optimize the path of the project. The key
idea is that once a scientist learns that she has been scooped, she faces a tradeoff. She knows that on one
hand, she will get more credit if she publishes quickly because the scoop penalty grows with time (as shown
in Figure 6). On the other hand, she can expand the project in new directions (for example, by adding
additional structures or experiments). This will take time — leading to a larger penalty — but will also
make the project more valuable overall. Moreover, because she can now take advantage of informational
spillovers from the first paper, it might be easier to expand the project than before that paper was released.
We formalize this tradeoff in Appendix C. Broadly speaking, there are three possible cases. In one case, the
scientist speeds up when she learns that she has been scooped to minimize the penalty. In a second case,
she slows down and improves or broadens her project to maximize its value. Finally, it is possible that the
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cost of completing a project is no longer offset by the reward, leading to a third case where she abandons
the project upon learning it has been scooped.

In our data, we can observe the behavior of some scientists that were scooped before they had a chance
to complete their projects, and thus have the flexibility to re-optimize. Although not required by the PDB,
many deposits (79 percent) report the “collection date” which is the date that the scientist collected the x-ray
diffraction data at a synchrotron. Using these dates, we can identify races where scientists had successfully
crystallized their protein and collected diffraction data, then learned they were scooped by another team
prior to depositing their completed structure model (see Figure 2).

Overall, the empirical evidence is consistent with the second case: researchers spend longer to expand the
scope of their projects when they know they have been scooped. Figure 7 compares the timeframe of projects
between post-deposit scoops (our original sample) and pre-deposit scoops. On the left, we show the number
of years that pass between the original collection of the data and the time of being scooped. Not surprisingly,
pre-deposit scoops tend to be slightly earlier in the life of the project (mean of 1.6 years for pre-deposit scoops
and 1.7 for post-deposit scoops). There are very few projects that have a short (less than four month) lag
between collection and scoop in the post-deposit sample of races because the scientists wouldn’t have had
time to analyze the experimental data and deposit their structure. However, there is considerable overlap of
the distributions, suggesting that these two types of scoops occur in similar timeframes on average.

However, the right panel shows the number of years between the scoop and final release of the scooped
paper. This release gap is much longer on average for pre-deposit scoops (mean of 0.35 years for post-deposit
scoops, 2.12 for pre-deposit scoops), suggesting that for scientists who know they have been scooped but
decide to continue, their preferred strategy is to invest more time into the project rather than abandon.
One important point of context is that post-deposit scooped projects are mandated to release the findings
after one year, so even if post-deposit scooped teams wanted to change their research, add experiments, or
re-write their paper, they have much less flexibility after they have already deposited.

This delay in release appears to be consistent with scientists electing to add additional experiments and
differentiate their project from the race winner. Table 8 presents regression results using the full sample
of races associated with 1,778 pre-deposit scoops and 979 post-deposit scoops combined for which we have
available data.25 We regress a series of project characteristics that relate to the margins of adjustment
discussed above on a scooped indicator and an interaction between a pre-deposit indicator and the scooped
indicator.26 In column 1, we can see that there is a very large increase in maturation time (time between
collection and release) for the pre-deposit scooped teams relative to the post-deposit scooped teams, spending
1.2 more years on average. Next, we consider how trailing scientists may adjust the scale or scope of their
research to offset the scoop penalty. We find in Columns 2 and 3 that pre-deposit scooped teams were much
more likely to include multiple protein structures in their paper relative to the post-deposit scooped teams,
suggesting that pre-deposit scooped teams expand the scope of their papers. Next, we look at how scooped
teams may have adjusted the content of their paper by analyzing keywords from the paper titles. Column
4 suggests that scooped pre-deposit teams are much less likely to use the word “structure” or “structural”
than teams that were scooped post-deposit. However, as seen in column 5, they are more likely to use
words like “function”, “mechanism”, or “analysis” in the title. It appears that if teams have the flexibility
to adjust the direction of their research after being scooped, they choose to shift the focus away from the

25There are some cases where a team there is one pre-deposit scoop and one post-deposit scoop in the same cluster, i.e.,
scooped by the same priority deposit. For clarity in the regression specifications, we drop the pre-deposit scoops from these
clusters.

26The pre-deposit main effect is absorbed by the protein fixed effect.
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structure determination itself and toward describing the function or biological mechanisms that the structure
implies. Finally, we use another unique feature of the data to test whether trailing teams benefited from
the the priority deposit if they were scooped before completing their own work. The PDB contains a flag
for a technology called molecular replacement, which is a crystallography technique that improves model
prediction. Importantly, it relies on using another similar structure model as a pattern to refine the new
model from diffraction data (see Kim (2023) for a detailed explanation of the technology). Column 6 suggests
that scooped teams are more likely to use this technology, but only if they were scooped before they deposited.
If the winning structure is released after the trailing team deposits, as is the case in our post-deposit sample,
the trailing team is unable to take advantage of the winning structure model in their own process. However,
if the winning structure is released before the trailing team deposits, as is the case in our pre-deposit sample,
they are able to benefit from this information. This suggests there are meaningful knowledge spillovers
that benefit the losing team. In addition to being consistent with our model, we think this provides strong
empirical evidence that the release of the project represents a meaningful information shock. Overall, it
appears that scientists who are scooped before they have a chance to deposit their findings are more likely to
delay the release of their structure, increase the scope or change the direction of their research, and integrate
the knowledge from the first discovery into their project.

Finally, we compare the cost of being scooped before and after deposit. We interpret the results of
this exercise cautiously because of the endogenous selection into the pre-deposit sample and the additional
flexibility that pre-deposit scooped teams have to strategically respond to the scoop. Appendix Table A10
reproduces Table 4 in the pre-deposit sample. We find that the difference in most outcomes between the
winners and losers is about 20 percent larger in pre-deposit scoops compared to our primary post-deposit
sample. The citation gap is 28 percent in the pre-deposit scoops compared to 21 percent in the post-deposit
(main sample) scoops. The relative probability of publication is slightly smaller for pre-deposit scoops,
probably because conditional on persisting to deposit, scooped scientists are likely to see the project through
to publication.

6 Reputation and the Scoop Penalty

Scientific races provide a unique setting to study how academic recognition is affected not only by priority,
but also by the preexisting reputation of winners and losers. We find that when a high-status team scoops
a low-status team, they receive 66 percent of the total citations, but when a low-status team scoops a high-
status team in a comparable race, they only receive 47 percent of the the total citations. This asymmetry
in attention suggests that the distribution of priority rewards is not formulaic and may be affected by the
institutions, norms, or biases of the academic community. In Appendix Section C, we present a model of
academic attention based on a standard statistical discrimination model (Aigner and Cain, 1977). Here we
present empirical results that support the predictions of the model.

Priority rewards are allocated by a decentralized set of actors, including journal editors and readers, in a
market for academic attention. Because scientists have limited time for reading and reviewing new papers, it
may be difficult to determine the quality of new research. Therefore, editors and readers may rely on signals
of ability based on the reputation of the researchers or their institution to supplement their judgement of
a paper’s quality. The model considers cases where two types of teams, high- and low-reputation, publish
identical papers. Readers decide who to cite based on priority and reputation. In cases where teams are of
the same type, the priority effect is isolated, and the first team to publish receives more than 50 percent
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of the total citations. However, in cases where teams are of different types, the priority and reputation
effects will either work in the same or opposite direction, depending on which team finishes first. If the
high-reputation team wins the race, the two effects reinforce each other, meaning the high ranked team will
have an equal or greater share of citations compared to the low-ranked team than they would competing
against another high-reputation team. If the low-reputation team scoops the high-reputation team, the net
effect is ambiguous. If the reputation effect is stronger than the priority effect, the low-reputation team may
receive less than 50 percent of the total citations, despite publishing first.

To test our model, we measure the share of total citations received by winning and losing labs, and
compare these shares in races where the reputation varies between the two racing teams. More specifi-
cally, if lab A and lab B race to write a paper about the same protein, we compute CitationShareA =

CitationsA/(CitationsA + CitationsB). This citation share maps to the probability of citation outlined in
the model above.27

We proxy for the pre-existing “reputation” of each lab using the Lasso-estimated predicted citations from
the non-racing data sample as described in Section 3.2. Labs with above-median predicted citations are
categorized as H labs, while teams below median are called the L labs. In Figure 8 we plot the predicted
citations of the losers on the x-axis and the predicted citations of the corresponding winners on the y-axis.
Each point on this scatter plot represents the observed match between two racing labs. If all labs were
equally matched in pre-existing reputation, all points would lie on the dashed 45-degree line. Of course labs
are rarely perfectly matched in the data, providing variation in the difference of reputation between the
winners and losers.

The median lines in Figure 8 conveniently partition the sample into four sub-samples that line up with
the four types of “matchups” we discuss in our model. The top right and bottom left corners represent
subsamples of closely matched races where both labs were either high-reputation or both low-reputation.
The top-left and bottom-right subsamples represent mismatched races where an above-median team scooped
a below-median team and vice versa.

In mismatched races, we interpret the difference between citations as being caused by an additive effect
of priority and reputation. One potential confounder in that interpretation is that high- and low-reputation
teams might produce different quality of scientific outputs for the same structure discovery. If H teams
produce higher quality or more convincing results, then the additional citations they receive may not only
be caused by their high-profile reputation. Although it is difficult to quantify all aspects of paper quality, we
examine two important measures of quality reported by the PDB: resolution and R-Free (goodness-of-fit),
described in more detail in Section 3.2. Appendix Table A11 compares the average resolution and R-Free
of the winning and losing structures in each of the four subsets of races. We find very little evidence of
statistical difference in quality metrics between H and L teams engaged in a race. This suggests that any
difference in citations is not driven by the quality of science that each team is producing.

Figure 9 shows the average citation counts by matchup type, as well as the citation shares. Panel A
shows the evenly matched races, which isolates the priority effect. As predicted by the model, the winning
labs receive more citations. Moreover, if we look at the share received by the winning team, we see that it
is identical in the H versus H matchups and the L versus L matchups (winning team receives 55 percent of
the total citations), which is consistent with the model.28

27The model does not include the possibility of co-citations, where both papers are cited together, but the empirical results
are proportional to an analysis where co-citations are excluded.

28The restriction to evenly matched teams in panel A is also a convenient check on the identification assumptions for a causal
interpretation of the estimated scoop effect. Even when competitors are well-matched on observables, there exists a statistically
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Panel B shows the unevenly matched races. When an H lab scoops an L lab, the priority effect and the
reputation effect work in the same direction. Here we see that, consistent with proposition 2, the winning
team receives an even larger share of the total citations (66 percent). Conversely, when an L lab scoops an
H lab, the priority effect and the reputation effect move in opposing directions. In this case, it appears that
the reputation effect is the stronger of the two, with the winning team receiving less than half (47 percent)
of the total citations. Again, this matches the prediction outlined by proposition 2 of the model.

Collectively, we interpret this as evidence that statistical discrimination based on prior lab reputation
can rationalize our heterogeneity results. The lack of symmetry exhibited in panel B suggests that being
first is not the sole determinant of credit in science. In science, there is no central arbiter that gives legally
binding credit or property rights to the first-place team. Here the teams vie for attention, and although the
low-reputation teams may benefit by winning a race, there appears to be built-in inequality in attention that
prevents them from capturing as much of the credit as their high-reputation competitors.

7 Benchmarking Magnitudes: Survey Results

We estimate that getting scooped causes a decrease in the probability of publication, leads to publication in
lower-impact journals, and reduces citations. However, priority races are not winner-take-all. Our citation
estimate suggests that winners get 56 percent of the total citations, a far cry from 100 percent as is often
assumed in the theoretical literature. But how does this estimated share of credit compare to scientists’
beliefs? In an email survey of structural biologists, we pose a hypothetical situation about a late-stage race
to publication. The full text of the questions can be found in Appendix D. First we ask, “Suppose you have
just completed a very promising research project...what do you think is the probability that your project
will be scooped between now and when it is published?” We next state that their hypothetical project has
indeed been scooped by a paper in the journal Science. In this scenario, we ask them the following questions:
“Would you choose to abandon your manuscript? Assuming you submit, what is the probability the article
will eventually be published? What is the best journal that would accept your paper? If your competitor
receives 100 citations, how many citations do you expect your publication to receive?”

Table 8 reports the average responses of the biologists and compares them to the magnitudes estimated
in the PDB data. The hypothetical scenario in the survey was designed to match the instances of racing
that we have in our data. However, because we tried to pose the survey questions as concretely as possible
for clarity, the racing situation does not exactly match the average situation in the PDB. In particular, in
the survey the losing team is scooped early in the submission process, and the project is very high-quality,
with an expected journal placement in Science. Therefore we report estimates in column 2 from a subset of
the PDB data where (1) the losing team is scooped soon after they deposit their data,29 and (2) one of the
teams published in one of the three highest impact journals (Science, Nature, or Cell). These restrictions
make some of the PDB estimates smaller or larger, but we still consistently find evidence of pessimism
among respondents. Surveyed scientists report a 27 percent chance of being scooped between submission
and publication, more than three times the 8 percent scoop probability in the comparable PDB sample.30

significant priority premium that is unlikely to be driven by positive selection of winners.
29Specifically, we sort races by the time elapsed between the loser deposit date and the winner release date and keep the

quarter of race losers that were scooped earliest in the process.
30One caveat to this comparison is that we identify scooping papers in the PDB that have a very specific and perhaps narrow

type of overlap, a structure determination for a protein that is similar enough in amino acid sequence to register in our cluster
definitions. It may be that a scientist could see other types of papers related to their protein that have conceptual overlap that
is different than the dimension we are measuring, which might explain why they report a higher probability of being scooped
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Six percent of respondents report that they would abandon the project, but only 70 percent think they
would succeed at publishing conditional on submitting, suggesting a 66 percent unconditional probability of
publishing. This is much lower than the 85 percent of scooped papers that are actually published in the PDB
data, and the 98 percent that are published in the comparable subsample. Scientists are very pessimistic
about the potential journal placement of scooped papers, expecting that the best journal they could publish
in would be almost three standard deviations below Science, which has a standardized impact factor of about
three in most years. Finally, we ask about expected citation effects. When asked to guess the number of
citations they would receive compared to the hypothetical winner’s 100 citations, the average guess was only
41 citations, which translates to a 59 percent penalty, or a share of 29 percent of the total citations. The
corresponding estimate in the PDB is no more than a 21 percent penalty or a 44 percent share. Ultimately,
PDB scientists expect much worse consequences from being scooped than can be found in the data.

Table 8 also reports survey responses separately for high- and low-reputation scientists. We split the
survey sample using the same Lasso-predicted citation measures used in Section 6. Column 4 reports the
average responses for below-median reputation scientists, column 5 reports the average responses for above-
median reputation scientists, and the difference with standard errors is reported in column 6. High- and low-
reputation respondents predict equal probabilities of being scooped. Low-reputation respondents are more
pessimistic however about the probability of publishing conditional on being scooped, with seven percentage
points lower probability that they will be able to publish their scooped paper. Perhaps surprisingly, both
types of respondents had similar expectations for the types of journals that they would publish in, all
expecting that the scooped papers would fall to field journals or middling general interest journals with
average impact factor. But they again depart on their expected citations, with high-reputation scientists
expecting to get about five more citations (nine percent) than low-reputation scientists. This difference in
expectations is consistent with our results about the role of reputation in determining priority rewards. Since
both types of authors suggest they would submit to similar journals, it may be that the difference in citations
is driven by statistical discrimination of editors, reviewers, and readers as explained in the model in Section
6. It appears that although all scientists are pessimistic about the cost of getting scooped, less prominent
authors are particularly concerned. Our estimates of significant inequality in citation patterns suggest that
these beliefs may be justified.

8 Conclusion

Priority races are a common feature of academic science, and credit for priority is considered an important
motivator for the generation of new knowledge. Yet, we have little empirical evidence on how these priority
rewards are structured. Racing is hard to analyze empirically because proximate research projects are difficult
to link in data and many scooped projects are abandoned before entering the scientific record. This paper
makes progress on these empirical challenges by focusing on project-level data in a setting that captures the
near universe of completed projects in structural biology. By taking advantage of the unique data collected
by the PDB, we are able to construct credible estimates of the priority premium in the field of structural
biology. We find that rewards are far from winner-take-all; rather, our preferred estimates suggest a 56-44
split in citations between the winning and losing paper.

This paper contributes to our understanding of the role of priority and the structure of incentives in
basic research. Academic science is an atypical marketplace of productive activity. New ideas are valuable

in expectation than we observe in the PDB.
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for the world but are not immediately marketable, and are therefore unlikely to be produced by private
firms or individuals seeking profits. A patent system is therefore a less effective instrument for encouraging
investment, risk-taking, effort, or disclosure of scientific studies. Instead, a system of priority rewards has
developed to encourage research investment, which is reinforced through norms in the scientific community.
Individuals who produce new knowledge are given credit by the community that can accumulate into a
reputation that likely has both intrinsic and monetary value to the scientist. Although R&D races have been
posed as winner-take-all tournaments in past literature, we find that priority rewards are not winner-take-all,
but are potentially still an important motivator of both effort and novelty in science. Even if the result of
one race has a small impact on careers, the accumulation of credit may still be important.

In this paper, we establish that priority is a relevant incentive in science, but we do not analyze the overall
welfare implications of the priority system and size of the priority premium, nor do we consider alternative
systems or policies. How would a larger or smaller priority premium affect the efficiency of science? There
are many margins to consider, including how it would affect effort, project selection, collaboration, and even
participation in science. A particularly interesting concern raised in popular and academic writing is that
priority may be pursued at the expense of quality. Racing to complete projects may stimulate effort and
hasten the pace of discovery, but it may lead scientists to cut corners on the quality of the results that they
disclose. If the incentives for replication are low and the costs of replication are high, science as a whole may
suffer as quick and sloppy research becomes the norm. In Hill and Stein (2020), we analyze objective measures
of the quality of crystal diffraction data and corresponding structure models to study how racing in science
affects quality outcomes. We find that proteins with high ex-ante potential have more competitors racing to
complete the structure, are deposited faster, and are completed with lower quality. This evidence suggests
that racing in science does indeed hasten disclosure, but has negative effects on quality. Concerns about the
cutthroat nature of racing have led to suggestions of policies that might dampen the strong incentives for
novelty. These include allowing a grace period for journal acceptance in a few months after being scooped,
providing opportunities to establish priority for early-stage work through pre-prints, or directly incentivizing
replication efforts through directed grant funding.

Finally, the results of our survey suggest that scientists are very pessimistic about the cost and probability
of being scooped. If the perceived threat of being scooped has a negative influence on the pace, direction,
quality, and openness of science, we believe that this paper should help assuage concerns about competition
for priority and foster a more productive research environment.
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Figures and Tables

Figure 1: Project Timeline and Key Dates

crystallize protein determine structure paper under reviewwrite and submit paper publication

Deposit Date:
Team uploads project 
details to the PDB 
database in secret

Release Date:
Project is released at time 
of publication* for public 
view

PDB dates: Collection Date:
Self-reported date of 
X-ray experiments at 
synchrotron

*If project goes unpublished, data is 
released publicly after one year

PDB deposit hidden from public

Mean = 16.8 months
Median = 11.4 months

Mean = 6.5 months
Median = 5.1 months

Notes: This figure shows the timeline of a typical PDB project. Dates in bold above the line are observed in our data. Events
listed below the timeline are the approximate timing of other project events including the submission and review process.
Deposit event and structure data is hidden from public until the structure is released.
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Figure 2: Defining Priority Races

Release Date A

Release Date BDeposit Date B

Pre-Deposit Scoops (alternate sample): Project A scoops Project B

Deposit Date A Release Date A

Release Date B

Post-Deposit Scoops (main sample): Project A scoops Project B 

Deposit Date B

Notes: This figure shows visually the timing rule we use to define scoops. In the first example, Project A scoops Project B
because both projects were deposited prior to Project A’s release. These “post-deposit” scoops make up our main analysis
sample of races. In the second scenario, Project A releases before Project B, but Project B had not yet deposited at the time
of Project A’s release. Therefore this example would be excluded from our main regression sample, but is used in our analysis
of “pre-deposit” scoops in Section 5.
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Figure 3: Example Priority Race — Pdx-P450cam Complex

4JWS 3W9C

Notes: This figure presents a side-by-side comparison of the biological assembly models of the Pdx–P450cam complex protein
deposited by two independent racing teams. According to the scoop definition in Section 2.4, structure deposit 4JWS scooped
structure deposit 3W9C. See Table 1 for more details.
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Figure 4: Histogram of Team Reputation Difference

Difference in Means: 0.656
p-value: 0.076
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Notes: An observation in this figure is a racing pair. The blue distribution shows the actual difference in predicted citations.
Bars the the right of zero represent instances when the winning team had higher predicted citations than the losing team, and
bars to the left of zero represent instances when the winning team had lower predicted citations than the losing team. The
white distribution outlined in black shows the difference in predicted citations if the winning and losing team were randomly
chosen. This random selection of winners was simulated 100 times to create the histogram and is therefore close to symmetric
and centered around zero.
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Figure 5: Journal Placement and Timing of Scoops

Cell

Nature

ScienceStructure

Plos One

β:  0.053 ( 0.004), N: 290

0

.2

.4

.6

.8

1

-1 0 1 2 3 4

Standardized Journal Impact Factor

for scooped papers by publishing journal
Share Received before Scoop Date

Cell Nature

Science

Structure

Plos One

β:  0.075 ( 0.005), N: 290

0

.2

.4

.6

.8

1

-1 0 1 2 3 4

Standardized Journal Impact Factor

for scooped papers by publishing journal
Share Accepted before Scoop Date

Notes: The figure reports the share of scooped papers that were received and accepted before the scoop date at different
journals. Each circle represents one of the eleven largest journals that we collected supplemental data on the editorial timeline.
Journals are arranged along the x-axis by their standardized journal impact factor. The size of the circles is proportional to
the number of scooped papers published in each one.
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Figure 6: JIF and Citation Penalty by Scooped Project Release Delay
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Notes: The sample of races is divided into three terciles along the distribution of time between winning and losing release date.
Races are positioned along the x-axis at the average scoop release delay within each group. Projects released in close proximity
are to the left, and those with a long delay are to the right. The y-axis shows the difference in journal impact factor and
citations between the winner and loser in the left and right panel respectively.
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Figure 7: Gaps Between Collection, Scoop, and Release for Pre- and Post-Deposit Scoops
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Notes: The figure shows the amount of time that passes between the collection date and the scoop (left panel) and between
the scoop date and release date (right panel) for pre-deposit and post-deposit scoops. Histogram is top-coded at five years
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Figure 8: Scatter Plot of Team Reputation Difference
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Notes: An observation in this figure is a racing pair. The y-axis shows the predicted citations for the winning team, and the
x-axis shows the predicted citations for the losing team. Perfectly matched teams would lie on the 45-degree line. If the winning
team has higher predicted citations than the losing team, the dot will lie above the 45-degree line. If the winning team has
lower predicted citations than the losing team, the dot will lie below the 45-degree line.
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Figure 9: Priority Effect by Reputation Match-up
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B. Mismatched Races

Notes: We divide the sample of races from Figure 8 into four quadrants, depending on whether the winners and losers are
above- or below-median in expected 3-year citations defined by the Lasso estimation. In each panel, the dark bars represent
the actual citations of the winning team and the light bars of the losing team. Panel A reports the comparison between evenly
matched races, H scoops H or L scoops L. Panel B reports the comparison between mismatched races, H scoops L or L scoops
H. The winner’s share of total citations are reported above each set of bars.

Table 1: Example Priority Race — Pdx-P450cam Complex

Winning project Scooped project

PDB structure ID 4JWS 3W9C

Protein name Pdx-P450cam complex Pdx-P450cam complex

Paper title "Structural Basis for Effector Control and 

Redox Partner Recognition in Cytochrome 

P450"

"The Structure of the Cytochrome 

P450cam-Putidaredoxin Complex 

Determined by Paramagnetic NMR 

Spectroscopy and Crystallography."

Key dates:

    Collection date September 14, 2012 February 3, 2012

    Deposit date March 27, 2013 April 3, 2013

    Release date June 19, 2013 August 21, 2013

First author affiliation University of California, Irvine Leiden University

Journal Science Journal of Molecular Biology
Journal impact factor 31.5 4

Five Year Citations: 52 39

cluster id: c100:20906

Notes: This table presents an example of a racing pair identified in the Protein Data Bank using the scoop rules

outlined in Section 2.4. See Figure 3 for the image of the structure models deposited by each team.

40



Table 2: Summary Statistics for Structure-Level Data

Racing Not racing

Difference 

(race - not race)

Variable (1) (2) (3)

Panel A. Team characteristics
Number of authors 7.120 7.454 -0.333 (0.079) ***
Affiliation in North America 0.292 0.350 -0.058 (0.008) ***
Affiliation in Europe 0.152 0.158 -0.007 (0.006)

Affiliation in Asia 0.191 0.133 0.058 (0.007) ***
Top 50 university 0.250 0.241 0.010 (0.008)

Rank 51-200 university 0.239 0.260 -0.021 (0.008) ***
Other affiliation 0.511 0.499 0.011 (0.009)

Industry or non-profit affiliation 0.152 0.170 -0.018 (0.006) ***
First author experience (years) 5.449 5.986 -0.537 (0.109) ***
Last author experience (years) 7.426 7.813 -0.387 (0.120) ***

Panel B. Project outcomes
Published 0.866 0.752 0.114 (0.006) ***
Standardized impact factor 0.113 -0.045 0.158 (0.021) ***
Top ten journal 0.355 0.281 0.074 (0.010) ***
Five-year citation counts 26.178 17.245 8.933 (0.736) ***
Top 10% in five-year citations 0.130 0.130 0.000 (0.000) ***

Observations 3,279 64,018

Std. error of 

difference

(4)

Notes: This table presents summary statistics for the racing and non-racing samples. Observations are at the structure

level. Column 1 shows the means of the racing sample and column 2 shows the means of the non-racing sample.

Column 3 shows the difference between the racing and non-racing projects, and column 4 shows the

heteroskedasticity-robust standard error of the difference. 

*p<0.1, **p<0.05, ***p<0.01.
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Table 3: Covariate Balance Between Winning and Losing Teams

Racing: Racing: Difference:
Not racing losers winners (lose - win)

Variable (1) (2) (3) (4)

Panel A. Team characteristics
Number of authors 7.454 7.183 7.056 0.127 (0.205)

Affiliation in North American 0.350 0.264 0.321 -0.057 (0.022) ***
Affiliation in Europe 0.158 0.133 0.171 -0.039 (0.018) **
Affiliation in Asia 0.133 0.224 0.156 0.068 (0.018) ***

Top 50 university 0.241 0.224 0.277 -0.053 (0.021) **
Rank 51-200 university 0.260 0.248 0.230 0.018 (0.020)
Other affiliation 0.499 0.528 0.493 0.035 (0.023)
Industry or non-profit affiliation 0.170 0.153 0.152 0.001 (0.018)

First author experience (years) 5.986 5.748 5.139 0.609 (0.279) **
Last author experience (years) 7.813 7.526 7.322 0.204 (0.313)

Panel B. First author productivity (prior five years)
Deposits 12.362 3.789 5.504 -1.715 (0.686) **
Publications 2.893 2.591 3.139 -0.548 (0.464)
Top-10 publications 0.656 0.707 0.671 0.036 (0.064)
Top-5 publications 0.222 0.261 0.241 0.020 (0.032)

Panel C. Last author productivity (prior five years)
Deposits 44.284 30.944 29.006 1.938 (4.329)
Publications 9.909 12.515 13.404 -0.890 (2.242)
Top-10 publications 4.030 4.672 4.628 0.044 (0.511)
Top-5 publications 1.422 1.654 1.801 -0.147 (0.190)

Panel D. Project quality metrics (lower is better)
Resolution (Å) 2.244 2.328 2.315 0.013 (0.062)
R-free goodness-of-fit 0.236 0.245 0.243 0.002 (0.002)

Observations 64,018 1,668 1,611 F -stat: 3.959 ***

difference
(5)

Notes:  This table compares characteristicsof winning and losing projects in order to check for treatmentbalance. Observations are at
the structure level. Column 1 shows the means of the non-racing sample, column 2 shows the means of the losing projects in the
racing sample, and column 3 shows the means of the winning projects in the racing sample. Column 4 shows the difference between
the losing and winning projects, and column 5 shows the heteroskedasticity-robust standard error of the difference.The F-statistic
and associated p -value is calculated in a regression in which all of the variable values are stacked into a single left-hand side
outcome variable and the treatment indicator is interacted with variable fixed effects on the right-hand side. 
*p<0.1, **p<0.05, ***p<0.01.

Std. error of 
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Table 4: Effect of Getting Scooped on Project Outcomes

Std. journal Top-ten Five-year Top-10% five year
Published impact factor journal citations citations

Dependent variable (1) (2) (3) (4) (5)

Panel A. No controls
Scooped -0.025 -0.192*** -0.066*** -0.245*** -0.037***

(0.015) (0.044) (0.020) (0.071) (0.014)

Panel B. Base controls
Scooped -0.026** -0.183*** -0.064*** -0.216*** -0.028**

(0.013) (0.044) (0.021) (0.063) (0.014)

Panel C. PDS-Lasso selected controls
Scooped -0.026*** -0.186*** -0.063*** -0.208*** -0.036***

(0.010) (0.032) (0.015) (0.045) (0.010)

Winner Y mean 0.879 -0.027 0.320 28.830 0.149
Observations 3,279 3,279 3,279 2,514 2,514
Notes: This table presents regression estimates of the scoop penalty, following equation 2 in the text. Each regression contains
protein (i.e., race) fixed effects. Observations are at the structure level. Each coefficient is from a separate regression. Panel A
presents results from a specification with no controls. Panel B adds the base set of controls as listed in Table 3. Panel C uses
controls selected by the PDS-Lasso method. Standard errors are in parentheses, and are clustered at the race level. Column 4
regression uses asinh(five-year citations) as the dependent variable, but Winner Y Mean is reported in levels for ease of
interpretation.
*p<0.1, **p<0.05, ***p<0.01.

Table 5: Effect of Getting Scooped on Five-Year Productivity

Any PubMed Any PDB PubMed PDB Top-ten Citation-weighted Top-10% cited

within five years within five years publications publications publications publications publications

Dependent variable (1) (2) (3) (4) (5) (6) (7)

Panel A. All scientists
Scooped -0.018*** -0.042*** -1.165 -0.085 -0.114 -0.172*** -0.414**

(0.006) (0.010) (1.051) (0.220) (0.100) (0.044) (0.180)

Winner Y mean 0.841 0.702 45.869 7.154 3.610 497.203 7.741

Observations 8,624 8,624 8,624 8,624 8,624 6,484 6,484

Panel B. Novices
Scooped -0.057*** -0.040** -0.021 0.003 0.104 -0.321*** -0.102

(0.018) (0.019) (0.276) (0.168) (0.068) (0.103) (0.109)

Winner Y mean 0.469 0.356 4.243 1.890 0.616 75.691 1.165

Observations 2,033 2,033 2,033 2,033 2,033 1,529 1,529

Panel C. Veterans
Scooped -0.006* -0.040*** -1.200 -0.176 -0.197 -0.130*** -0.568**

(0.003) (0.012) (1.556) (0.308) (0.144) (0.043) (0.252)

Winner Y mean 0.990 0.839 61.681 9.261 4.787 667.421 10.388

Observations 5,821 5,821 5,821 5,821 5,821 4,378 4,378

Total count within five years after race

Notes:  This table presents regression estimatesof the long-run scoop penalty, following equation 3 in the text. Observations are at the scientist level. Each coefficient is from a

separate regression. Column 6 dependent variable is the total citations accrued in three years to all papers published in the five years after the race transformed with the the

inverse hyperbolic sine function (winner Y means reported in level citations). Column 7 dependent variable is the total number of publications that reach the top-10% of three-

year citations in that publishing year. Panel A presents results for all scientists. Panel B restricts to novices (defined as scientists with seven years or less of publishing

experienceprior to the priority race year), and panel C restricts to veterans (defined as all non-novices). All regressions include scientist-levelcovariatesselectedby PDS-Lasso

and race fixed effects. Standard errors are in parentheses, and are clustered at the race level. 

*p<0.1, **p<0.05, ***p<0.01.
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Table 6: Decomposing Citation and Journal Effect

Dependent variable (1) (2) (3) (4)

Scooped -0.166*** -0.113*** -0.105*** -0.047*
(0.032) (0.028) (0.028) (0.026)

Journal controls None Linear JIF Cubic JIF Journal FE

Winner Y mean 34.7 34.7 34.7 34.7
Observations 1,891 1,891 1,891 1,891

Five-year citations

Notes: This table reports the scooped coefficientsin regressions with five-year citationsas the outcome where
we control for journal impact factor. The citation counts are transformed with the inverse hyperbolic sine
function in the regression, but the winner Y mean is reported in levels for ease of interpretation. The
regression sample is restricted to races where both papers were published in a ranked publication.Column 1
re-estimates the Table 1, column 4 regression in this subsample. Column 2 and 3 add linear and then cubic
controls for journal impact factor. Column 4 includes fixed effects for journal. All regressions also include
PDS-Lasso selected controls and protein fixed effects.
*p<0.1, **p<0.05, ***p<0.01.

Table 7: Strategic Responses to Pre- and Post-deposit Scoops

Number of Multiple "Structure" "Function", "Mechanism", Uses Molecular
Maturation Proteins in Paper Proteins in Paper in Paper Title or "Analysis" in Title Replacement

Dependent variable (1) (2) (3) (4) (5) (6)

Constant 1.174*** 1.396*** 0.437*** 0.876*** 0.156*** 0.614***
(0.068) (0.088) (0.013) (0.016) (0.010) (0.010)

Scooped 0.026 -0.041 -0.005 -0.017 0.001 0.022
(0.062) (0.072) (0.021) (0.016) (0.017) (0.017)

Pre-deposit x Scooped 1.362*** 0.201** 0.061** -0.062*** 0.042** 0.080***
(0.095) (0.090) (0.027) (0.021) (0.021) (0.021)

Observations 5,398 5,398 5,398 5,398 5,398 5,398
Notes: This table presents regression estimates of strategic reponse outcomes on a scooped indicator and an interaction between a pre-deposit indicator and the 
scooped indicator. Pre-deposit scoops are those where the scooped team had collected data but not yet deposited at the time of the first paper release. Each 
regression contains  protein (i.e., race) fixed effects. Observations are at the structure level. All regressions include controls selected by the PDS-Lasso method. 
Standard errors are in parentheses, and are clustered at the race level. 
*p<0.1, **p<0.05, ***p<0.01.
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Table 8: Survey Benchmark of Scoop Penalty

Full Comparable All Below-median Above-median Column (4) - (5)
sample subsample respondents reputation reputation difference

(1) (2) (3) (4) (5) (6)

Prob (Scoop) 0.029 0.081 0.266 0.268 0.264 0.004
(0.016)

Prob (Publication) 0.854 0.976 0.665 0.628 0.703 -0.075***
(0.022)

Journal impact factor penalty -0.19 -1.21 -2.92 -2.95 -2.89 -0.055
(0.084)

Citation penalty -0.208 -0.131 -0.594 -0.620 -0.568 -0.052**
(0.024)

Scooped citation share 0.442 0.465 0.257 0.241 0.274 -0.033***
(0.011)

PDB estimate Survey estimate

Notes: This table reports the responses to a survey of 915 structural biologists. The survey asked respondents to estimate the probability and
consequences of getting scooped on a hypotheticalproject. See Appendix D for full survey text. Estimates from the PDB main regressions are reported
in column 1. Comparable subsample PDB estimates in column 2 restrict to PDB races where one racer published in Science, Nature,  or Cell,   and
losing team was scooped early in the process (quarter of sample with the shortest time between loser deposit and winner release). In column 4 and 5,
respondents were divided into two groups, high- and low-reputationusing the predictedcitationsmeasure used for heterogeneityin Section 6 of the text.
Column 6 reports the difference in response means between columns 4 and 5 and reports the heteroskedastic-robust standard error in parentheses.
*p<0.1, **p<0.05, ***p<0.01.
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A Data Appendix

A.1 Protein Data Bank

The Protein Data Bank (PDB) is the main source of project data we use to construct priority races. The first
iteration of the PDB started in 1971, and the current archive is a global collaboration run by a non-profit
organization called the World Wide Protein Data Bank (wwPDB). The wwPDB is a union of four existing
data banks from around the world, including the Research Collaboratory for Structural Bioinformatics
Protein Database (RCSB PDB), Protein Data Bank in Europe (PDBe), Protein Data Bank Japan (PDBj),
and Biological Magnetic Resonance Data Bank (BMRB). The data has been standardized and currently
represents the universe of discoveries deposited in each of these archives. All new discoveries deposited to
any database are transferred to, processed, standardized, and archived by the RCSB (Berman et al. 2006)
at Rutgers University. Details about the PDB data can be found on their website.31

We access the data directly from the RCSB Custom Report Web Service.32 The data extract used in
this study was downloaded on May 22, 2018. We use the following field reports and variables:

• Structure Summary: structure ID, structure title, structure authors, deposit date, release date.

• Citation: PubMed ID, publication year, and journal name.

• Cluster Entity: entity ID, chain ID, sequence similarity clusters (BLAST algorithm for 90 percent and
100 percent sequence similarity, see section B below)

• Data Collection Details: collection date (the self-reported date the scientists generated diffraction data
at a major synchrotron or in a home lab).

Additional data on cluster entities was accessed through a separate raw file archive at RCSB33 on December
14, 2018. These files provided additional cluster groupings for the BLAST algorithm at 50 percent and 70
percent sequence similarity.

A.2 Citations and Journal Impact Factor

We use the journal names from the PDB extracts to link data to the Journal Citations Reports for journal
impact factor and the Web of Science for citations.34 We link the Journal Citations Reports using the journal
name listed in the PDB. Each journal has an impact factor in each year and is calculated as the average
number of citations per paper in the preceding two years. We standardize impact factor in each year within
the set of PDB-linked publications in our extracts each year. The citation data from the Web of Science and
is restricted to citations from papers linked to PubMed IDs,35 and self-citations are excluded. Citations are
aggregated for each cited paper by publication year of the citing paper. When we report five-year citations,
it represents the total number of citations in the publishing year and the subsequent five calendar years.

31http://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/introduction
32https://www.rcsb.org/pdb/results/reportField.do
33ftp://resources.rcsb.org/sequence/clusters/ clusters50.txt and clusters70.txt
34Both data sources were owned by Thompson Reuters at the time of access, but have since been sold to Clarivate Analytics.
35Because structural biology falls squarely within the life sciences, restricting to citations with PubMed IDs is does not have

a large effect on citation counts.
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A.3 Altmetric.com Data

We use data from Altmetric.com to measure alternative forms of attention for academic research.36 One
limitation of the Altmetric data extract we use is that it only reports cumulative counts from the time of
publication to the present (date of access: August 2nd, 2019). We account for the fact that scooped papers
are published later and have less time to accumulate attention scores, using information about the change
in score in recent time periods. The Altmetric.com data reports the change in attention in the past week,
month, etc. We can therefore restrict the regression sample to races in which both teams had not accrued
any additional attention in the amount of time that had passed between publications. For example, if paper
A was released two months before paper B, we do not include this race in the analysis if paper A or paper
B had accrued any additional attention in the most recent two months. This allows paper B to have the
same window of time to accrue attention despite starting two months later. Because races in our sample end
across a wide range of years, the regression coefficients are interpreted as the percent difference in outcomes
for papers of an average vintage.

A.4 Editorial Dates

We access the received, accepted, and published dates from the websites of publications of Science, Nature
Journals, Cell Press, and Public Library of Science. While we were not able to obtain these dates for all
articles, we chose to focus on journals based on their prevalence in the PDB and the availability of the data
for download. This subsample covers 19 percent of our primary regression sample.

We use these data to look at the correspondence between the journal publication date and the release
date. Appendix Figure A4 reports the correspondence between the PDB release date and the publication
date for the 622 articles in the racing sample for which they are available. This correspondence is not
exact for a few reasons. First, according to PDB policy, scientists are allowed to release their findings
immediately after deposit, which could potentially come before the publication date. In typical practice, the
scientists prefer to wait until publication so that other scientists cannot use the information for follow-on
work until after publication. In fact, scientists prefer to wait for release as long as possible to maintain
a competitive advantage, which was the motivation behind the 1998 policy change to align release and
publication (Campbell 1998). Another reason that release may come earlier than publication is because of
the policy that all data is released after one year. If a team takes more than one year to publish results after
the deposit, they would be forced to release at the one year point even if they eventually publish. Release
sometimes happens after publication, but these cases should be rare and only be delayed for a few weeks.
Any longer delays for release is either due to data errors or non-compliance with PDB policies.

Overall, 49 percent of the release dates are within two weeks of publication. This may lead to concerns
about potential measurement error in the definition of the priority ordering. Throughout the paper, we
always define the order of PDB release as the rule for being scooped. The community tracks public PDB
releases carefully, so we believe this is a valid definition of priority. Publication dates are also complicated
in recent years by the practice of online publication, which sometimes comes weeks before the print edition
is published. But even if we prefer to consider only the publications as a claim to priority, our release date
definition appears to usually correspond to the publication date ordering. In the 102 races where we have
journal publication dates for the winner and loser, the priority ordering as defined by deposit corresponds
with the priority ordering as defined by publication 82 percent of the time. To the degree that this is

36https://help.altmetric.com/support/solutions/articles/6000190631-using-altmetric-data-for-altmetrics-research
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interpreted as measurement error, the scooped estimate will be somewhat attenuated.

A.5 Affiliations and University Rankings

Affiliation data is available from PubMed for most PDB deposits that resulted in a publication. Often
the affiliation is only available for the first author of those publications, so we assign that affiliation to all
authors on the publication. This assumption is more reasonable in structural biology than it is in economics
for example, because cross-university collaboration is somewhat unusual in lab-based life sciences. The
affiliations are contained in an author- or journal-reported text field that sometimes contains addresses or
non-standard abbreviations. We standardize as many of these affiliations as possible using regular expressions
and hand classification. We also assign as many affiliations as possible to their continent (Asia, North
America, Europe, and other) to use as control variables. Affiliations are also categorized based on whether
the affiliation is a university, non-profit research entity, or private corporation (typically a pharmaceutical
company). In our full sample of projects (both racing and non-racing), there are 44,167 unique PubMed
articles linked to the deposits. Of those papers, we were able to classify 71 percent to a standardized
affiliation.

We link the university affiliations to the QS Top Universities Ranking for Life Sciences and Medicines.37

This website provides rankings for 500 top academic programs based on surveys of academics and employers
as well as citations per paper and h-index of the scientists affiliated with each department.

A.6 Name Disambiguation and Linked Author Papers in the PDB and PubMed

At various points in our analysis, we construct panel data of individual scientist and team productivity.
First, we use measures of past PDB and PubMed productivity as control variables (Tables 3 and 4) and to
predict citations as a measure of team reputation (Figures 8 and 9). Second, we use a panel of publications
to construct long-run outcomes in the years following a scoop event (Table 5). The PDB does not explicitly
link authors between deposits, and neither PubMed nor our version of Web of Science have author identifiers
across publications. A further challenge is that many PDB deposits are not linked to a publication, so
constructing control variables of past productivity is difficult using only publication data. We therefore
use two separate approaches for constructing author-level panel variables: 1) Link PDB deposits by simple
author name matching for control variables, 2) Use name disambiguation clustering from the Author-ity
project (Torvik et al. 2005; Torvik and Smalheiser 2009) to count future publications and citations for
long-run outcomes.

Simple Author Name Matching in PDB

In the first approach, we manually create a panel of author deposits and PDB-linked publications by matching
last names and initials within the PDB. This name disambiguation procedure requires making assumptions
about match reliability, and we follow the suggestions of Milojević (2013). We don’t use additional informa-
tion such as affiliations because they often change throughout a career, and are often only available for one
author in the team.

The name disambiguation procedure using only last names and initials is more reliable in a smaller
subset of academic papers. We therefore choose to focus the panel only on PubMed papers that are linked

37https://www.topuniversities.com/university-rankings/university-subject-rankings/2018/
life-sciences-medicine
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to the PDB instead of trying to use the full PubMed archive, which covers all of the medical and life
science literature. This choice improves the reliability of our name-matching, but offers less information
about academic productivity. Since we can use PDB name matching for unpublished deposits, we use this
approach for constructing control variables for our main analysis.

Scientists usually identify themselves on publications with a consistent last name, but are sometimes
inconsistent with their use of first and last initials, or first names and nicknames.38 According to Milojević
(2013), there are two potential matching errors that should be accounted for. First, a given individual may
be identified as two or more authors (splitting). Second, two or more individuals may be identified as a
single author (merging). We follow the hybrid model they propose to deal with these concerns, using first
and second initials to determine whether splitting or merging is likely, especially in cases of very common
last names.

To connect names across PDB-linked publications, we use the following procedure:

1. Strip names of non-alphabetic characters and standardize spacing and hyphenation of compound last
names.

2. Identify groups of paper-authors that have the same last name and first initial.

3. Look at the second initial to determine potential merging errors. We find that 96.5 percent of the last
name/first initial groups have no second-initial conflict, so we treat these as distinct individuals

4. If we are unable to differentiate the individual using the second initial, (e.g. JACKSON, P; JACKSON,
PA; and JACKSON, PS), we keep them as a merged name, but mark the group as “common.” These
make up 3.5 percent of the sample.

5. We include a dummy control variable throughout the analysis that indicates the common names to
help account for the possibility that name-matching errors are correlated with treatment.

We also use this panel to assign university rank and location controls. Racing projects sometimes go unpub-
lished, so we cannot use the PDB-linked publication affiliation as a control variable in the main regression.
Therefore we assign the most recent affiliation of the first author in the publication panel to improve the
coverage of these control variables.

Author-ity Name Disambiguation

For long-run productivity outcomes, we focus on a broader set of PubMed publications. For most authors,
structural biology in the PDB is only one part of their scientific portfolio. Since simple name matching is
not reliable in the full sample of PubMed publications, we use a dataset called Author-ity (Torvik et al.
2005; Torvik and Smalheiser 2009) to help disambiguate names. The Author-ity project is a large-scale,
data-driven effort that incorporates additional information about co-author networks and research topics to
separate unique authors within the full PubMed database. Each iteration of an author last name and first
initial that appears on a PubMed paper is grouped together with the other papers that the algorithm infers
to be the same individual and is assigned a unique person ID. For example, the name JACKSON, P has 293
different person IDs in Author-ity, each with a distinct set of PubMed identified papers.

38Changes from maiden names to married names is also a potential source of error which we cannot account for, but this is
becoming less common in recent years, especially among academics.
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If all PDB deposits were published, we could simply link the PDB deposits to the associated authors using
PubMed IDs. But many of the racing projects are not published, so we need to match PDB author names
to Author-ity name clusters and determine which cluster the PDB author belongs to. We first merge the
full list of PDB author names to Author-ity using last name and first initial. We then mark every instance
where a PDB-linked PubMed ID matches to a PubMed ID cluster within the Author-ity merged name.

These two steps leave us with three distinct groups of author names in the PDB:

1. Names that do not match to any Author-ity cluster (11 percent of racing sample authors). These are
individuals who deposit at least once in the PDB, but never publish a paper (e.g. a graduate student
that does not pursue academia).

2. Names that have PubMed IDs that match to one and only Author-ity person ID (60 percent of racing
sample authors). We take this exclusive matching as evidence that all instances of the name in the
PDB is a single person that is represented by the matched Author-ity person ID.

3. Names that have PubMed IDs that match to multiple Author-ity person IDs (29 percent of racing
sample authors). These are common names that are likely distinct people within the PDB. We drop
them from the long run analysis sample because we cannot determine which person is the author of a
structure deposit that is not published.

We restrict our long-run analysis sample to the first two groups listed above (71 percent of racing sample
authors). In this sub-sample, the individuals either never published a PubMed paper, or if they did, we have
confidence that the PDB name represents a single individual.

Although our name disambiguation methods are not perfect, we rely on the assumption that any biases
in our measures are equally distributed across winning and losing teams in a race. Given the balance in
team characteristics shown in Table 3, we believe the winning teams are no more likely to have common
names or mis-calculated productivity variables than losing teams, which should limit potential bias. To the
extent that any remaining name matching mistakes create classical measurement error in the right-hand side
variables, it would attenuate our results.

B Protein Similarity and Race Definition

In this section we describe in detail the algorithm used to construct priority races used for our main analysis.
Although the main text of the paper describes the basic rules for this sample construction, we report here a
number of technical details and decisions that were used to construct the races in practice.

B.1 Sequence Similarity Algorithm

Each protein in the PDB is a chain composed of the 22 different types of proteinogenic amino acids in some
combination. The order of these molecules in the chain defines the type of protein, and we use this code to
compare the similarity of the proteins that scientists are working on. The PDB provides a clustering algorithm
called the Basic Local Alignment Search Tool or BLAST (Altschul et al. 1990) which creates groupings of
structure deposits that have identical or similar amino acid chains. The clusters can be defined at different
thresholds of similarity, including 100 percent, 90 percent, 70 percent, and 50 percent. One possible approach
to defining races would be to only focus on competing projects that determine the structure of proteins that
are 100 percent similar. But in many cases, two proteins that are 90 percent similar or lower have many of
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the same defining features and functions within the same organism or across different species. Therefore,
many interesting priority races are between teams working on very similar if not identical proteins. Following
the similarity threshold chosen by (Brown and Ramaswamy 2007), we define racing for proteins all the way
down to 50 percent similarity. We include races with a broad threshold in part to increase the sample size
for our regressions, but also to include races over discoveries that were exceedingly different from any past
structure discoveries. Other recent economics papers that study protein clusters also use similar cutoffs
(Kim, 2023; Zhuo, 2022). We further validate our choice of similarity by comparing pairs of papers in each
similarity category. Figure A1 calculates the share of scooped papers that cite the winning paper and plots
it separately by sequence similarity. These are constructed as mutually exclusive groups with structures
placed in the highest similarity cluster they appear in together. 70 percent, 90 percent, and 100 percent
show almost identical rates, and the 50 percent similar pairs have only a slightly lower rate. Figure A2
shows the similarity between the winning and losing paper titles calculated with a character-replace string
similarity metric. Here we see that the titles are equally similar between 50 percent, 70 percent, 90 percent,
and 100 percent similarity papers.

Another tricky feature of the PDB data is that cluster groupings are sometimes defined at a level of
granularity that is smaller than our outcome variables, which are defined at the structure deposit and article
level. Proteins are composed of “chains” of amino acids, and large proteins are often characterized in the
PDB as a set of distinct chains. Further, chains of amino acids are often grouped as “entities”, and many
proteins are combinations of two or more entities. This is relevant to our sample construction because the
BLAST similarity algorithm clusters at the entity level rather than the protein level. In simple cases where
proteins are made of a single entity (79 percent of structures in the PDB), a new structure discovery might
directly scoop another team working on the same entity. But in some cases, a team working on a single
entity might scoop a team that is working on a complex protein with multiple entities, only one of which was
being worked on by both teams. These deposits will still be linked by the algorithm, but the interpretation
of the scooping event is less obvious. We consider these cases to be “partial scoops” where some part of the
scientific discovery was overshadowed by the winning team. Since outcomes are defined at the protein and
paper level, including these partial scoops will potentially understate the effect of an average “full scoop.” In
our final regression sample, 68 percent of races are composed only of single-entity structures, 16 percent are
exclusively multi-entity structures, and 16 percent are a mix of single- and multi-entity structures. We drop
some very large proteins (such as the ribosome) that have more than 15 entities (0.7 percent of the sample).
In these cases, the notion of a partial scoop is hard to define, as many different discoveries overlap at the
entity level in sometimes complicated directions.

B.2 Procedure for defining races and scoop events

We follow the steps below to define priority races and scoop events. These steps are performed separately for
four different similarity thresholds (50 percent, 70 percent, 90 percent, and 100 percent) and then combined
in a final step.

1. Keep all clusters that have at least two deposits.

2. Sort the deposits within the clusters by release date, starting with the project that was released earliest.
We focus only on cases of novel structure discoveries, so winners must be the first structure release in
a given similarity cluster. We call this the priority deposit.
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3. Compare the list of structure authors on the priority deposit with the list of authors on all subsequent
deposits. Drop any follow-on deposits with one or more author names that were also on the priority
deposit.39

4. Drop all deposits with a deposit date after the release date of the priority deposit. This rule allows for
multiple teams to be scooped by the same priority structure. See Section 2.3 for a discussion of this
rule.

This procedure identifies a set of races that are defined within 50 percent, 70 percent, 90 percent, or 100
percent similarity clusters. We consolidate to a final analysis sample that minimizes duplicate races and
duplicate deposits. Using this procedure leaves us with some proteins that are scooped at multiple levels.
For example, protein A may be first and protein B may be second in a 100 percent similar cluster but are
also the first and second in a 90 percent similar cluster (and 70 percent and 50 percent). To avoid counting
this race multiple times, we keep only the instance defined in the 100 percent sample. In more complicated
cases, protein A might be scooped by protein B that is 70 percent similar, but also scooped by protein C
that is 100 percent similar either before or after protein B is released. In these cases, we always keep the
scoop event at the closest similarity. So the race between protein A and protein B is dropped, and the race
between protein A and protein C is kept. This leaves us with a final sample of mutually exclusive races
where each scooped paper only appears once. Some winning deposits are allowed to scoop more than one
protein, sometimes at different similarity levels. In Appendix Table A5, we include robustness results of our
main effects for races defined at the 100 percent level, and show that the results are comparable.

39In a few cases, we see instances where the same team of authors deposited multiple structure discoveries in the same cluster
around the same time. We keep only one of those structures per team and give preference to the first deposit that resulted in
a publication or the first one deposited if they are never published.
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C Theoretical Appendix

C.1 A Model of Strategic Responses to Getting Scooped Before Project Com-
pletion

C.1.1 Setup

We start by considering the optimization problem of a scientist at the outset of a race with no information
of her competitor’s progress relative to her own. First, she chooses a maturation period m, which is the time
she will spend on the project from start to finish. Higher m increases the value V (m) of the project but
also increases the cost c ·m of the project, where V (0) = 0, V ′(m) > 0, and V ′′(m) < 0. Given the utility
function

u(m) = V (m)− c ·m

the scientist will select some m∗ that maximizes her utility.40 This m∗ is defined by the first-order condition:

V ′(m) = c.

As structural biology is a secretive field, we assume she has no knowledge about any potential competitors
or their progress, and thus she will commit to this m∗ unless additional information is revealed.

Now suppose there is a penalty for being scooped θ ∈ [0, 1] such that the losing team gets θV (m) rather
than V (m) if the other team finishes first. Due to the attribution frictions raised by Dasgupta and David
(1994) and the empirical evidence we show in Figure 6, we let the scoop penalty vary with the gap between
when the two papers are released. In particular, let this gap be denoted g(m) and let the scoop penalty be
decreasing and convex in g. In other words, θ(0) = 1, θ′(g) < 0, and θ′′(g) > 0

C.1.2 Re-optimization.

If the scientist learns that she has been scooped before completing the project, new information is revealed
and she has a chance to re-optimize. In other words, if she learns that she has been scooped at time m1 < m∗,

she now maximizes
u(m̃) = θ(g(m̃))V (m̃)− c̃ · (m̃−m1) subject to m̃ ≥ m1.

We let m̃ represent her new choice of m, after this revelation of information. θ(g(m̃))V (m̃) is the value
of the project despite getting scooped, and c̃ · (m̃ − m1) is the remaining costs left to pay. In this case,
g(m̃) = m̃ − m1. We assume that c̃ ≤ c, capturing the fact that the release of the first project may make
some aspects of the project easier, due to informational spillovers. The solution to this optimization problem
is m̃∗, which is implicitly defined by the first-order condition:

θ′(g(m̃∗))V (m̃∗) + θ(g(m̃∗))V ′(m̃∗) = c̃.

The left side of this equation represents the net marginal benefit of increasing m: the sum of the marginal
decay in credit plus the marginal benefit of adding value. The behavior of this side of the equation depends
on the specific functional forms of θ(·) and V (·). However, we would like to show that it is possible for either

40Note that to keep things simple, the researcher does not consider the probability of getting scooped in her selection of m.
We could modify the problem to make u(m) depend on some expectation of the credit she gets for V (m) (similar to Hill and
Stein (2020)). All we require here is a non-zero solution to the maximization problem.
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m̃∗ < m∗ or m̃∗ > m∗. We can simply show that this is the true via specific examples.
Let V (m) = ln(1 + m), and let c = 0.5. In this case, before knowledge of the scoop, the first-order

condition yields:

V ′(m∗) = c =⇒ 1

1 +m∗ = 0.5 =⇒ m∗ = 1.

Now, suppose that θ(g) = e−0.1g. To keep things simple, further assume that m1 = 0, so that θ(g) = θ(m̃) =

e−0.1m̃. Start by letting c̃ = 0.5 = c. The first-order condition for this problem yields:

θ′(m̃∗)V (m̃∗) + θ(m̃∗)V ′(m̃∗) = c̃

−0.1e−0.1m̃∗
ln(1 + m̃∗) + e−0.1m̃∗

(
1

1 + m̃∗

)
= 0.5

m̃∗ ≈ 0.70 < m∗

In this case, upon learning she has been scooped, the researcher will publish earlier than she originally
planned. However, if instead c̃ = 0.25 < c due to informational spillovers from the first project, then solving
the first-order condition yields m̃∗ ≈ 1.58 > m∗. In this case, upon learning she has been scooped, the
researcher decides to slow down.

In general, we have three possible cases:

1. Case 1 (“hurry up and finish”): In this case, the researcher chooses m̃∗ < m∗, because the decaying
credit plus the continuation costs outweigh increasing the value of the project.

2. Case 2 (“delay and expand”): In this case, the researcher chooses m̃∗ > m∗, because the increasing
value of the project outweighs the decaying credit plus continuation costs.

3. Case 3 (“abandon”): Of course, it is possible that even after selecting a new m̃∗, the benefits once the
researcher knows they will be scooped are not enough to outweigh the costs of completing the project.
These projects will therefore go unfinished.

C.2 A Model of Academic Attention

C.2.1 Setup

Editors, reviewers, and authors read new academic papers. In doing so, they receive a noisy signal of the
paper’s quality. The notion that paper quality is only partially observed by readers is similar to the setup
in Card and DellaVigna (2020) and may arise from inattention or uncertainty about the importance of the
contribution. The signal, s, is a function of the paper’s true underlying quality (q) as well as a noise term,
u:

s = q + u

where u ∼ N(0, σ2
u) is independent of q ∼ N(α, σ2

q ). Following the standard statistical discrimination model,
readers will use both the signal and the average quality to infer the paper’s quality:

q̂(s) = E[q|s] = λs+ (1− λ)α

where λ =
σ2
q

σ2
q+σ2

u
is the signal-to-noise ratio. Intuitively, expected quality is a weighted average of the

observed signal and mean quality. Readers put more weight on the signal when λ is large, i.e. when the
signal is informative relative to the noise term.
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The Priority Premium When making decisions about which paper to publish or cite, scientists care about
both quality and priority. Consider two papers which answer the same question, with inferred qualities q̂1

and q̂2. Let the numeric subscript index the order of publication, so that q̂1 was published before q̂2, and let
f > 0 denote the priority premium. A scientist will cite the first paper if q̂1 + f ≥ q̂2. On the other hand, a
scientist will cite the second paper if q̂1 + f < q̂2.

Lab Types Suppose there are two types of labs, H and L. H labs are “high-reputation” labs, known for
producing papers of high average quality, while L labs are “low-reputation” labs, known for producing papers
of low average quality. In other words, q is drawn from a different distribution depending on the lab type.
For H labs, qH ∼ N

(
αH , σ2

q

)
while for L labs, qL ∼ N

(
αL, σ2

q

)
. The key distinction between the two lab

types is that αH > αL. We will assume that variances are equal.
When two labs each write a paper on the identical topic (or in our case, protein), the true qualities of

the two papers are the same. However, if the labs have different reputations, the inferred qualities will be
different, even if the signals are identical:

q̂H(s) = λs+ (1− λ)αH

q̂L(s) = λs+ (1− λ)αL.

Ultimately, this gives rise to two distinct effects when competing labs publish on the same protein. The
“priority effect” leads scientists to cite the earlier paper, since this paper receives a premium, as described
above. On the other hand, the “reputation effect” leads scientists to cite the paper from the higher-reputation
lab, since this paper will have higher inferred quality. This insight leads us to two propositions.

Proposition 1. If labs are the same type, then the lab that publishes first is more likely to be cited. In other
words,

P (q̂H1 + f ≥ q̂H2 ) = P (q̂L1 + f ≥ q̂L2 ) >
1

2
.

Proof of Proposition 1.
The intuition is that if the labs are the same type, there is no differential reputation effect. Therefore,

citations are driven solely by the priority effect. Consider two high-reputation labs, H1 and H2. H1 publishes
before H2. The probability that H1 is cited is:

P
(
q̂H1 + f > q̂H2

)
= P

(
(1− λ)αH + λs1 + f > (1− λ)αH + λs1

)
= P (λ(q + u1) + f > λ(q + u2))

= P (λu1 + f > λu2)

= P

(
u2 − u1 <

f

λ

)
= P

(
u2 − u1√

2σu

<
f

λ
√
2σu

)
= Φ

(
f

λ
√
2σu

)
>

1

2

using the fact that (u2 − u1) ∼ N
(
0, 2σ2

u

)
and f, λ > 0. Similarly, consider two low-reputation labs, L1 and
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L2. L1 publishes before L2. Analogously, the probability that L1 is cited is Φ
(

f

λ
√
2σu

)
> 1

2 .

Proposition 2. If the lab that publishes first is H-type and the lab that publishes second is L-type, then the
lab that publishes first is more likely to be cited. Moreover, the difference in citations will be greater than if
the labs were the same type. Conversely, if the lab that publishes first is L-type and the lab that publishes
second is H-type, it is ambiguous which lab is more likely to be cited. However, the difference in probability of
citation will certainly be less than if the labs were the same type. This means that we can rank the probability
of citation in all four scenarios:

P (q̂H1 + f ≥ q̂L2 ) > P (q̂H1 + f ≥ q̂H2 ) = P (q̂L1 + f ≥ q̂L2 ) > P (q̂L1 + f ≥ q̂H2 ).

Proof of Proposition 2.
The intuition is that if the first lab is H-type and the second lab is L-type, then the priority effect and

the reputation effect work in the same direction. However, if the first lab is L-type and the second lab is
H-type, then the priority effect and the reputation effect are working in opposite directions. Therefore, the
net effect on citation behavior is ambiguous.

Consider a high-reputation lab and a low-reputation lab, H1 and L2. H1 publishes before L2. The
probability that H1 is cited is:

P (q̂H + f > q̂L) = P
(
(1− λ)αH + λs1 + f > (1− λ)αL + λs2

)
= P

(
(1− λ)αH + λ(q + u1) + f > (1− λ)αL + λ(q + u2)

)
= P

(
(1− λ)(αH − αL) + f > λ(u2 − u1)

)
= P

(
u2 − u1 <

(1− λ)(αH − αL) + f

λ

)
.

= P

(
u2 − u1√

2σu

<
(1− λ)(αH − αL) + f

λ
√
2σu

)
= Φ

(
(1− λ)(αH − αL) + f

λ
√
2σu

)
> Φ

(
f

λ
√
2σu

)
>

1

2

again using the fact that (u2 − u1) ∼ N
(
0, 2σ2

u

)
and (1 − λ) > 0, αH > αL. Similarly, consider a low-

reputation lab and a high-reputation lab, L1 and H2. L1 publishes before H2. The probability that L1 is
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cited is:

P (q̂L + f > q̂H) = P
(
(1− λ)αL + λs1 + f > (1− λ)αH + λs2

)
= P

(
(1− λ)αL + λ(q + u1) + f > (1− λ)αH + λ(q + u2)

)
= P

(
−(1− λ)(αH − αL) + f > λ(u2 − u1)

)
= P

(
u2 − u1 <

−(1− λ)(αH − αL) + f

λ

)
.

= P

(
u2 − u1√

2σu

<
−(1− λ)(αH − αL) + f

λ
√
2σu

)
= Φ

(
−(1− λ)(αH − αL) + f

λ
√
2σu

)
< Φ

(
f

λ
√
2σu

)
.

Whether the expression is greater or less than 1
2 depends on the magnitude of (1−λ)(αH−αL). More specifi-

cally, if (1−λ)(αH−αL) < f , then P (q̂L + f > q̂H) > 1
2 . If (1−λ)(αH−αL) > f , then P (q̂L + f > q̂H) < 1

2 .
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E Appendix Figures and Tables

Figure A1: Probability of Loser Citing Winner by Sequence Similarity
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Notes: This figure shows the probability that the losing team cites the winning team at increasing levels of sequence similarity.
Similarity groups are mutually exclusive so that races are placed in the highest similarity cluster in which they appear together.
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Figure A2: Title Similarity Between Winning and Losing Paper by Sequence Similarity
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Notes: This figure shows the character replacement string similarity of the titles of the winning and losing papers at increasing
levels of sequence similarity. Similarity groups are mutually exclusive so that races are placed in the highest similarity cluster
in which they appear together.
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Figure A3: Probability that Scooped Paper Cites Winning Paper by Release Date Gap
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Notes: This binned scatterplot shows the probability that the scooped paper cited the winning paper by the number of days
between the release dates of the winning and losing projects. Sample is 1,149 races where both teams published papers with a
PubMed ID.
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Figure A4: Correspondence Between Release Date and Available Publication Dates
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Notes: This histogram shows the correspondence between PDB release date and publication date when publication dates are
available from the editorial date supplement. Positive days means the publication came before release, and negative days mean
it came after release.
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Table A1: Lasso-selected Variables and Coefficients for Predicted Citations

Lasso-selected variables Post-Lasso OLS coefficients

Number of authors 0.54

Affiliation in North America 1.75

Affiliation in Asia -3.49

Non-academic affiliation 1.75

First author experience (years) -0.20

First author top-5 publications, 5 prior years 2.47

First author PDB deposits, all years squared 0.00

First author PDB deposits, 5 prior years squared 0.00

First author publications, 5 prior years squared 0.00

Last author experience (years) -0.22

Last author PDB deposits, 5 prior years -0.11

Last author publications, 5 prior years 0.02

Last author top-5 publications, all years 0.21

Last author top-5 publications, 5 prior years 2.14

Last author PDB deposits, all years squared 0.00

Last author PDB deposits, 5 prior years squared 0.00

Last author top-10 publications, 5 prior years squared -0.01

University rank bins:
    1-10 3.50

    81-90 -0.99

    101-110 -2.43

    111-120 4.98

    151-160 -2.71

    171-180 -2.18

    181-190 -0.40

    211-220 -5.20

    221-230 -6.87

    271-280 -4.20

    291-300 -3.05

    401-410 -2.74

    451-460 -2.77

Constant 10.30

    R-squared 0.102

    N 58,758

Updated: 3/24/22

Notes: This table presents results from a Lasso regression of 3-year unconditionalcitations on

observable team characteristics.The model is estimated in the non-racing sample and uses data-

driven and heteroskedasticity-robust penalization.Estimated coefficients are from a post-Lasso

OLS regression of 3-year citations on selected regressors.

63



Table A2: Effect of Getting Scooped on Project Outcomes - Oster (2019) Robustness Check

Std. journal Top-ten Five-year Top-10% five year
Published impact factor journal citations citations

Dependent variable (1) (2) (3) (4) (5)

Panel A. No controls, no FE
Scooped -0.025** -0.191*** -0.065*** -0.239*** -0.035***

(0.011) (0.031) (0.014) (0.051) (0.010)
[0.001] [0.008] [0.005] [0.006] [0.003]

Panel B. Base controls, protein FE
Scooped -0.026** -0.183*** -0.064*** -0.216*** -0.028**

(0.013) (0.044) (0.021) (0.063) (0.014)
[0.704] [0.676] [0.604] [0.767] [0.725]

Oster (2019) Bias-adjusted ! -0.027 -0.179 -0.063 -0.209 -0.025
Selection ratio (") needed for ! = 0 62.5 16.1 14.8 16.6 7.6

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 1 1

0 0 0 0 0
63 16 15 17 8

Notes: This table presents regression estimates of the scoop penalty following equation 2 in the text (see Table 4). Panel A reports coefficients 

from a simple bivariate regression with no controls or protein fixed effects with standard errors in parentheses and R2 in brackets. Panel B includes 

all base controls and protein fixed effects, comparable to panel B in Table 4. The Oster (2019) bias adjusted coefficient assumes a maximum R2 =1 
and "=1, meaning we assume that treatment is selected equally on observables and unobservables. The selection ratio (") needed for ! = 0 shows 
that treatment would need to be 7 times more selected on unobservables than observables for the coefficient to equal zero. 
*p<0.1, **p<0.05, ***p<0.01.

Table A3: Effect of Getting Scooped on Project Outcomes - Alternative Hit Rate Metrics

Top-1% three year Top-5% three year Top-10% three year Top-1% five year Top-5% five year Top-10% five year Top-1% ten year Top-5% ten year Top-10% ten year

citations citations citations citations citations citations citations citations citations

Dependent variable (1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. No controls
Scooped -0.007 -0.023** -0.033** -0.006 -0.017* -0.037*** -0.011* -0.031** -0.049***

(0.005) (0.009) (0.013) (0.005) (0.010) (0.014) (0.006) (0.014) (0.017)

Panel B. Base controls
Scooped -0.007 -0.020** -0.027** -0.005 -0.013 -0.028** -0.009 -0.027* -0.044***

(0.004) (0.010) (0.013) (0.005) (0.010) (0.014) (0.006) (0.014) (0.017)

Panel C. PDS-Lasso selected controls
Scooped -0.007** -0.022*** -0.031*** -0.005 -0.015** -0.036*** -0.010** -0.030*** -0.046***

(0.003) (0.007) (0.010) (0.003) (0.007) (0.010) (0.004) (0.010) (0.012)

Winner Y mean 0.012 0.076 0.148 0.011 0.068 0.149 0.012 0.081 0.153

Observations 2,931 2,931 2,931 2,514 2,514 2,514 1,515 1,515 1,515

Notes: This table presents regression estimates of the scoop penalty with alternative hit rate measures, following equation 2 in the text. Each regression contains  protein (i.e., race) fixed effects. Observations are       

at the structure level. Each coefficient is from a separate regression. Panel A presents results from a specification with no controls. Panel B adds the base set of controls as listed in Table 3. Panel C uses controls  

selected by the PDS-Lasso method. Standard errors are in parentheses, and are clustered at the race level. 

*p<0.1, **p<0.05, ***p<0.01.
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Table A4: Effect of Getting Scooped on Project Outcomes - No Protein (i.e., Race) Fixed Effects

Std. journal Top-ten Five-year Top-10% five year
Published impact factor journal citations citations

Dependent variable (1) (2) (3) (4) (5)

Panel A. No controls
Scooped -0.025** -0.191*** -0.065*** -0.239*** -0.035***

(0.011) (0.031) (0.014) (0.051) (0.010)

Panel B. Base controls
Scooped -0.022** -0.155*** -0.053*** -0.181*** -0.025**

(0.009) (0.032) (0.014) (0.046) (0.010)

Panel C. PDS-Lasso selected controls
Scooped -0.021** -0.155*** -0.051*** -0.169*** -0.024**

(0.010) (0.031) (0.015) (0.046) (0.010)

Winner Y mean 0.879 -0.027 0.320 28.830 0.149
Observations 3,279 3,279 3,279 2,514 2,514
Notes: This table presents regression estimatesof the scoop penalty, following equation 2 in the text, but excluding protein (i.e.,
race) fixed effects. Observations are at the structure level. Each coefficient is from a separate regression. Panel A presents results
from a specificationwith no controls. Panel B adds the base set of controls as listed in Table 3. Panel C uses controls selected by
the PDS-Lasso method. Standard errors are in parentheses, and are clustered at the race level. Column 4 regression uses
asinh(five-year citations) as the dependent variable, but Winner Y Mean is reported in levels for ease of interpretation.
*p<0.1, **p<0.05, ***p<0.01.

Table A5: Effect of Getting Scooped on Project Outcomes - 100 Percent Sequence Similarity

Std. journal Top-ten Five-year Top-10% five year
Published impact factor journal citations citations

Dependent variable (1) (2) (3) (4) (5)

Panel A. No controls
Scooped -0.023 -0.174** -0.054* -0.272** -0.047**

(0.025) (0.070) (0.032) (0.112) (0.021)

Panel B. Base controls
Scooped -0.035 -0.157** -0.047 -0.287*** -0.032

(0.022) (0.074) (0.035) (0.109) (0.020)

Panel C. PDS-Lasso selected controls
Scooped -0.027 -0.172*** -0.052** -0.253*** -0.047***

(0.018) (0.052) (0.023) (0.080) (0.015)

Winner Y mean 0.882 -0.078 0.289 27.956 0.138
Observations 1,178 1,178 1,178 891 891
Notes:  This table presents regression estimatesof the scoop penalty comparableto Table 4 in the main text. This version restricts
to protein clusters in which the BLAST algorithm classifies the protein sequences as being 100% similar. This sub-sample
therefore offers the narrowest definition of a scoop where the racing projects are scientificallyidentical. See Table 4 notes for
regression details.
*p<0.1, **p<0.05, ***p<0.01.
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Table A6: Effect of Getting Scooped on Alternative Measures of Attention

Dependent variable: Mendeley News Wikipedia Patent Twitter Atltmetric
All transformed with asinh() downloads stories citations citations mentions attention score

(1) (2) (3) (4) (5) (6)

Panel A. No controls
Scooped -0.468*** -0.108** -0.038** -0.009 -0.112 -0.246***

(0.151) (0.042) (0.018) (0.028) (0.078) (0.095)

Panel B. Base controls
Scooped -0.455*** -0.095** -0.031 -0.002 -0.093 -0.216**

(0.146) (0.044) (0.020) (0.031) (0.075) (0.091)

Panel C. PDS-Lasso selected controls
Scooped -0.425*** -0.105*** -0.035** -0.010 -0.095* -0.229***

(0.104) (0.031) (0.014) (0.021) (0.054) (0.066)

Winner Y mean 43.025 0.650 0.105 0.262 3.974 9.201
Observations 1,321 1,321 1,321 1,321 1,321 1,321
Notes: Attention outcomes are sourced from Altmetric.com. Sample restricted to years 2011-2017. Each regression contains protein
(i.e. race) fixed effects. Observations are at the structure level. Each coefficient is from a separate regression. Panel A presents results
from a specification with no controls. Panel B adds the base set of controls as listed in Table 3. Panel C uses controls selectedby the
PDS-Lasso method. Standard errors are in parentheses, and are clustered at the race level. All outcomes are cumulative counts of the
metrics summed over time between the publication date to August 2019. All counts are transformed with the inverse hyperbolic sine
transformation. The Altmetric Attention Score is a composite measure of all metrics used by Altmetric.com.
*p<0.1, **p<0.05, ***p<0.01.

Table A7: Effect of Getting Scooped on Three-Year Productivity

Any PubMed Any PDB PubMed PDB Top-ten Citation-weighted Top-10% cited
3 years later 3 years later Publications Publications publications publications publications

Dependent variable (1) (2) (3) (4) (5) (6) (7)

Panel A. All scientists
Scooped -0.012** -0.037*** -0.471 -0.132 -0.023 -0.161*** -0.224*

(0.006) (0.011) (0.524) (0.115) (0.062) (0.041) (0.118)

Winner Y mean 0.824 0.646 27.145 4.305 2.184 297.661 4.655
Observations 10,033 10,033 10,033 10,033 10,033 7,660 7,660

Panel B. Novices
Scooped -0.033** -0.019 -0.042 -0.090 0.071* -0.252*** -0.047

(0.017) (0.018) (0.143) (0.097) (0.040) (0.086) (0.063)

Winner Y mean 0.428 0.309 2.307 1.097 0.334 44.063 0.680
Observations 2,369 2,369 2,369 2,369 2,369 1,806 1,806

Panel C. Veterans
Scooped -0.005 -0.037*** -0.214 -0.069 -0.034 -0.142*** -0.308*

(0.004) (0.013) (0.796) (0.163) (0.089) (0.044) (0.169)

Winner Y mean 0.983 0.781 36.687 5.595 2.917 400.753 6.263
Observations 6,729 6,729 6,729 6,729 6,729 5,167 5,167

Total count three years after race

Notes:  This table presents regression estimatesof the long-run scoop penalty, following equation 3 in the text. Observations are at the scientist level. Each coefficient is from a
separate regression. Column 6 dependent variable is the total citations accrued in three years to all papers published in the three years after the race transformed with the the
inverse hyperbolic sine function (winner Y means reported in level citations). Column 7 dependent variable is the total number of publications that reach the top-10% of three-
year citations in that publishing year. Panel A presents results for all scientists. Panel B restricts to novices (defined as scientists with seven years or less of publishing
experienceprior to the priority race year), and panel C restricts to veterans (defined as all non-novices). All regressions include scientist-levelcovariatesselectedby PDS-Lasso
and race fixed effects. Standard errors are in parentheses, and are clustered at the race level. 
*p<0.1, **p<0.05, ***p<0.01.
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Table A8: Effect of Getting Scooped on Ten-Year Productivity

Any PubMed Any PDB PubMed PDB Top-ten Citation-weighted Top-10% cited
10 years later 10 years later Publications Publications publications publications publications

Dependent variable (1) (2) (3) (4) (5) (6) (7)

Panel A. All scientists
Scooped -0.012* -0.034*** -2.793 0.014 -0.288 -0.031 -0.929

(0.007) (0.013) (2.786) (0.527) (0.231) (0.071) (0.596)

Winner Y mean 0.857 0.739 91.647 13.965 7.090 928.013 14.076
Observations 5,351 5,351 5,351 5,351 5,351 3,114 3,114

Panel B. Novices
Scooped -0.044* -0.056** 0.119 0.277 0.215 -0.125 0.563*

(0.022) (0.026) (0.826) (0.470) (0.181) (0.150) (0.306)

Winner Y mean 0.513 0.417 9.900 3.739 1.301 122.905 1.792
Observations 1,258 1,258 1,258 1,258 1,258 743 743

Panel C. Veterans
Scooped -0.002 -0.027** -5.388 -0.905 -0.684** -0.113* -1.752**

(0.002) (0.013) (4.069) (0.711) (0.325) (0.063) (0.837)

Winner Y mean 0.995 0.869 124.346 18.108 9.418 1243.954 18.891
Observations 3,607 3,607 3,607 3,607 3,607 2,079 2,079

Total count ten years after race

Notes:  This table presents regression estimatesof the long-run scoop penalty, following equation 3 in the text. Observations are at the scientist level. Each coefficient is from a
separate regression. Column 6 dependent variable is the total citations accrued in three years to all papers published in the ten years after the race transformed with the the
inverse hyperbolic sine function (winner Y means reported in level citations). Column 7 dependent variable is the total number of publications that reach the top-10% of three-
year citations in that publishing year. Panel A presents results for all scientists. Panel B restricts to novices (defined as scientists with seven years or less of publishing
experienceprior to the priority race year), and panel C restricts to veterans (defined as all non-novices). All regressions include scientist-levelcovariatesselectedby PDS-Lasso
and race fixed effects. Standard errors are in parentheses, and are clustered at the race level. 
*p<0.1, **p<0.05, ***p<0.01.

Table A9: Effect of Getting Scooped on Five-Year Productivity, Author Position Subsamples

Any PubMed Any PDB PubMed PDB Top-ten Citation-weighted Top-10% cited

within five years within five years publications publications publications publications publications

Dependent variable (1) (2) (3) (4) (5) (6) (7)

Panel A. First Authors
Scooped -0.031* -0.037 2.132 -0.025 0.034 -0.128 0.307

(0.017) (0.023) (2.094) (0.283) (0.134) (0.106) (0.401)

Winner Y mean 0.821 0.692 31.576 4.191 2.045 278.251 4.296

Observations 1,166 1,166 1,166 1,166 1,166 890 890

Panel B. Middle Authors
Scooped -0.020** -0.047*** -1.857 -0.279 -0.011 -0.245*** -0.666***

(0.010) (0.016) (1.453) (0.237) (0.127) (0.072) (0.257)

Winner Y mean 0.828 0.658 42.433 5.476 3.020 481.690 7.378

Observations 4,833 4,833 4,833 4,833 4,833 3,624 3,624

Panel C. Last Authors
Scooped -0.012 -0.044** -3.850 -0.719 -0.658** -0.299*** -0.713*

(0.009) (0.019) (2.448) (0.648) (0.310) (0.091) (0.429)

Winner Y mean 0.901 0.843 61.543 14.557 6.629 669.102 10.964

Observations 1,190 1,190 1,190 1,190 1,190 900 900

Total count within five years after race

Notes:  This table presents regression estimatesof the long-run scoop penalty, following equation 3 in the text. Observations are at the scientist level. Each coefficient is from a

separate regression. Column 6 dependent variable is the total citations accrued in three years to all papers published in the five years after the race transformed with the the

inverse hyperbolic sine function (winner Y means reported in level citations). Column 7 dependent variable is the total number of publications that reach the top-10% of three-

year citations in that publishing year. Panel A presents results for the first scientist listed on the structure deposit, Panel B restricts to middle authors, and Panel C restricts to

last authors. We use the the author list and ordering on the structure deposit because it is availablefor all teams regardless of publicationstatus. It is usually the same as the

resulting paper author list and ordering but with occasional differences. All regressions include scientist-levelcovariates selected by PDS-Lasso and race fixed effects.

Standard errors are in parentheses, and are clustered at the race level. 

*p<0.1, **p<0.05, ***p<0.01.
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Table A10: Effect of Getting Scooped Prior to Deposit

Std. journal Top-ten Five-year Top-10% five year
Published impact factor journal citations citations

Dependent variable (1) (2) (3) (4) (5)

Panel A. No controls
Scooped 0.023* -0.156*** -0.070*** -0.136** -0.038***

(0.014) (0.038) (0.016) (0.067) (0.014)

Panel B. Base controls
Scooped -0.025** -0.224*** -0.091*** -0.308*** -0.046***

(0.011) (0.040) (0.016) (0.061) (0.015)

Panel C. PDS-Lasso selected controls
Scooped -0.020** -0.216*** -0.085*** -0.284*** -0.042***

(0.008) (0.029) (0.012) (0.044) (0.010)

Winner Y mean 0.842 -0.116 0.276 29.167 0.152
Observations 4,830 4,830 4,830 3,238 3,238
Notes: This table presents regression estimates of the scoop penalty restricting to scoops that occured prior to deposit. Each
regression contains protein (i.e., race) fixed effects. Observations are at the structure level. Each coefficient is from a separate
regression. Panel A presents results from a specificationwith no controls. Panel B adds the base set of controls as listed in Table
3. Panel C uses controls selectedby the PDS-Lasso method. Standard errors are in parentheses, and are clustered at the race level.
Column 4 regression uses asinh(five-year citations)as the dependent variable,but Winner Y Mean is reported in levels for ease
of interpretation.
*p<0.1, **p<0.05, ***p<0.01.

Table A11: Structure Quality Balance in High- and Low-Reputation Match-ups

Loser structure Winner structure Difference:
quality quality (lose - win) Observations

Matchup subsample (1) (2) (3) (5)

Panel A. Resolution (Å)
High scoops High 2.589 2.501 0.088 (0.221) 657
Low scoops Low 2.354 2.253 0.101 (0.129) 469
High scoops Low 2.186 2.179 0.008 (0.060) 500
Low scoops High 2.151 2.148 0.003 (0.053) 635

Panel B. R-free goodness-of-fit
High scoops High 0.256 0.248 0.008 (0.004) ** 634
Low scoops Low 0.245 0.243 0.002 (0.005) 464
High scoops Low 0.242 0.245 -0.003 (0.004) 492
Low scoops High 0.240 0.238 0.002 (0.004) 633

Std. error of 
difference

(4)

Notes:  This table compares structure quality metrics of winning and losing projects in subsamples of races divided by team 
reputation as measured by predicted citations. Lower values of resolution and r-free represent better quality. Observations are   
at the structure level. Column 1 shows the means of the losing projects in the racing sample, and column 2 shows the means     
of the winning projects in the racing sample. Column 3 shows the difference between the losing and winning projects, and 
column 4 shows the heteroskedasticity-robust standard error of the difference. 
*p<0.1, **p<0.05, ***p<0.01.
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