Week 3: Demand and Innovation

Carolyn Stein

Econ 220C: Topics in Industrial Organization



Innovation responds to incentives

“...invention is largely an economic activity, which, like other economic activities, is
pursued for gain.” — Schmookler (1966)

Or, more explicitly: “The amount of invention is governed by the extent of the
market” — Schmookler (1966)



The empirical relationship between market size and innovation

» You could imagine trying to correlate the amount / quality of innovation with
demand / market size, but market size is endogenous

» Better (more innovative) products will have more demand
» Broad idea: want shifters of market size that are uncorrelated with innovation

» Unexpected changes to vaccine policy
» Changing weather patterns due to climate change



Market size and innovation
Finkelstein (2004)

Market design for innovation



Static & Dynamic Effects of Health Policy: Evidence from Vaccines

> Key idea: policies designed for a “static” purpose of increasing utilization of an
existing technology may also have a “dynamic” effect on developing new
technologies

» More specifically, the paper studies the effect of public health policies designed to
increase vaccination rates (of existing vaccines)

P> These policies stimulated the development of new vaccines



Static framework

Vaccines yield positive consumption externalities. Thus SMB > Dy
equilibrium is (Qo, Po) where MRy = MC

Price

Dy

Po

. MC
T~ owp

MRy by MRi

Quantity

FIGURE I

. Current



Static framework

In a static world, we would simply subsidize demand to D; to arrive at the socially
optimal equilibrium Q*. This increases total welfare by abc (why?)

Price

b8 h
Dy
\b
==
=
e . MC
ST swe
~_MRo Dy MRi _
tity
0 Q Q Quantity

FIGURE I

However, it also increases monopolist profits from efda to eghc...



Incentives to innovate

> If the potential profits are larger, the returns to innovation are higher — firms will
innovate more

» If the innovation is actually higher quality (either increased social marginal benefits
or lower marginal costs), then this induced innovation further improves welfare

» On the other hand, if the innovation is pure business stealing, then the induced
innovation harms welfare (excess R&D expenditure)



Dynamic framework with positive innovation

The static subsidy moves us from Qg — Q1 but still below @*. This yields a static
benefit of abij
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Dynamic framework with positive innovation
However, innovation may also do two things:
1. Further shift private demand, getting us to Q* (adding jic)
2. Shift the SMB curve out, adding mjlc
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Vaccine policy and vaccine development

Four features that the policy changes should have:
1. Occur at a discrete time with no anticipation
2. Have a substantial effect on the return to vaccine development
3. Should effect only some vaccines (so others can be used as a control)
4

. Policies should not be prompted by technological developments



Policies in detail

The paper leverages three different vaccine policies (affecting six different vaccines)
1. 1991 CDC recommendation to vaccinate all infants against Hepatitis B
2. 1993 Medicare decision to cover flu vaccines

3. 1986 introduction of the Vaccine Injury Compensation Fund (protected
manufacturers from lawsuits from adverse reactions to polio, DT, MMR, and
pertussis vaccines)

Objective of these policies was to increase vaccination rates, but they also increased
the returns to developing vaccines for these diseases



Innovation outcomes

Measure the innovation response at four sequential stages in the R&D pipeline:
1. Basic research (via patents)
2. Preclinical (animal) trials (via the business publication The NDA Pipeline)
3. Clinical (human) trials (via the The NDA Pipeline)
4. FDA approvals (via the The NDA Pipeline)



Descriptive results immediately visible

An increase in innovation is immediately visible by simply looking at clinical trial starts

TABLE I
NUMBER OF NEW VACCINE CLINICAL TRIALS PER YEAR

Year clinical trial started

Disease 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

Affected diseases

Pertussis 1 1 0 0 ) 5 4 5 1 1 3 4 5 1 ) 2 6
Measles-Mumps-Rubella 0 0 1 0 0 1 0 1 ) 0 () 0 0 1 ) 0 0
Diphtheria-Tetanus 1 0 0 0 ) 3 1 3 ) 1 2 1 5 2 ) 2 7
Polio 0 0 0 2 1 2 1 0 0 0 1 0 1 1 o 0 2
Hepatitis B 1 0 3 1 0 1 0 1 0 0 2 2 5 3 1 5 5
Flu 0 0 0 0 0 0 0 2 1 0 1 2 1 3 2 4 3
Control diseases

“Any clinicals” 0.04 0.00 0.12 0.19 0.04 042 015 019 004 019 035 046 038 042 042 081 0.73
“Early clinicals” 0.14 000 043 071 014 129 057 057 014 042 014 071 100 071 043 029 0.70
“Prior approvals” 0.00 0.00 0.00 043 0.00 0.14 0.00 0.00 000 029 08 071 029 057 029 071 0.71
“Technology” 0.11 0.00 0.22 011 011 056 011 044 011 033 022 044 089 056 044 056 0.78

The switch from gray to white background demarcates the start of a new policy. Entries for control groups represent average number of new clinical trials per year. Table II
provides a list of the diseases included in each of the control groups; see text for further details.



Key regression

For disease i in year t:

NewTrials;y = a; + ¢ + AAdopt;, + €i
where:
> NewTrials;; is the number of new clinical trials for disease 7 in year t
» Adopt; is an indicator for whether a policy is in place

» Much care is taken in selecting appropriate control diseases with no vaccine policy



Defining the control groups

TABLE 1T
DESCRIPTION OF THE DISEASES IN THE VACCINE SAMPLE
Average
‘number of
new clinical
per
Included in restricted control  year per
groups? vaceine  Year
“Barly  “Prior 1983- 1996~ first
Disease name clinicals” approvals” “Technology” 1986 1999 approved

Treated Diseases
Hepatitis B v v 125 325 1981

Influenza v v 03 1945
Polio J v 05 075 1955
Diphtheria, Tetanus (DT) v v 025 275 1949
Measles, Mumps, Rubella (MMR) ./ v 025 025 1971
Pertussis v J v 05 225 1914
Control diseases (‘Any.
clinicals”)
Varicella (Chicken Pox) v 025 075 1995
Malaria v 025 1 Notyet
Cholera v v 025 0 1914
Haemophilus Influenza B (HIB) v 05 125 1985
Parainfluenza v v 025 05 Notyet
Gonorrhea v/ v 025 0 Notvet
Typhoid v v 05 05 1914
Tuberculosis (BCG) v 0 0 190
v o 2 19w
v 0 025 1953
v J 01 92
v 0 025 1977
v 0 025 199
v 0 025 Notyet
v 0 025 1998
Cytomagalovirus v 0 0 Notyet
Respiratory Syncytial Virus v 0 15 Notyet
Hepatitis 0 075 Notyet
Lyme Disease 0 05 1998
Chlamydia 0 025 Notyet
Japancse Encephalitis 0 05 1992
Epstein-Barr Virus 0 025 Notyet
E. Col 0 075 Notyet
Helicobacter pylori 0 05 Notyet
Human Papilloma Virus 0 075 Notyet
Otitis Media 0 125 Notyet

Listed control discases consist of all 26 discases included in the “any clinicals” control group. The first

diseases they indicate which of the treated diseases would also meet. these definitions. °
consiss of discasos that have at least one now clinical trial prior to 1987, Prior appr
diseasos for which an approved vaceine exists prior to 1983 (the stard of the data). “Tochnology” consiss of
diseases that are listed by the Institute of Medicine (1985) as having the potential to develop new or
o e health benefits within the United States.
Data source for al columns but the last one is The NDA Pipeline. Hoyt [2002] provided the approval dates.

Early clinicals”
14" consists of




Results suggest massive effects
> The policies are associated with 1.2-1.3 additional clinical trials (a 2.5x increase
over the mean of affected diseases prior to the policies).
» Alternatively, the estimates imply that these policies accounted for 1/3 of the
total 260 new vaccine trials for all diseases in the post-period
» Back-of-the-envelope: every $1 increase in expected market revenue — industry
will spend an additional $0.06 on R&D

TABLE III
EFFECT OF POLICIES ON NUMBER OF NEW CLINICAL TRIALS

Any Early Prior Propensity score
clinicals clinicals approvals Technology weighting
ADOPT 1.210%%* 1,307+** 1,233%**  1,2]12%** 1.192%%*
(0.184) (0.273)  (0.263) (0.242) (0.248)
Unadjusted p-value <0.01 <0.01 <0.01 <0.01 <0.01
Adjusted p-value <0.01 <0.01 <0.01 <0.01 <0.01
Mean dependent
variable 0.48 0.87 0.75 0.73 0.54
Number of diseases 32 13 13 15 32
N 544 221 221 255 544

Results are from OLS estimates of equation (1). Top row indicates the control group used; these are
defined in Table IL. Al regressions include year and disease fixed effects. Unadjusted standard errors are in
parentheses. Adjusted p-values are calculated using the randomized inference approach of Bertrand, Duflo,
and Mullainathan [2004]. ***, *%, and * indicate significance at the 1 percent, 5 percent, and 10 percent level,
respectively, using the unadjusted p-values.



Dynamics
» Dynamics suggest no anticipation

> Also suggest not just a “pulling forward” of planned investment, but rather new
investment

Change in mean # of new clinical trials per year for affected
relative to control diseases

7+ years prior
46 years prior
13 years prior I

3 years in effect

4.6 years in effect
7+ years in effect

Time relative to policy implementation

FIGURE IIT
Timing of Effect of Policies on New Clinical Trials
Figure III graphs the coefficients on the ADOPT variables from estimating equation (2) using the “any clinicals” control
group; the regression includes year and disease fixed effects. The reference period (1-3 years prior to adoption) is set at the
mean of the dependent variable for the affected diseases in that period. The dotted lines represent the 95 percent confidence
intervals for these coefficients, based on the unadjusted standard errors. The adjusted and unadjusted p-values (not shown) are
comparable.



Results for earlier-stage R&D

Don't see strong evidence for increases in earlier-stage R&D (though not sure how
good the patent data is...why not use academic papers?)

TABLE V
EFFECT OF POLICIES ON INVESTMENT AT EARLIER STAGES OF THE R&D PIPELINE

Number of new Number of new
Number of new  patents filed by for- patents filed by
preclinical trials profit companies nonprofit entities

Any Any Any
clinicals Propensity clinicals Propensity clinicals Propensity
1 3) 5)

score (2) score (4) score (6)
ADOPT 0.115 0.184 0.198 0.260 0.120 0.097
(0.173) (0.234) (0.126) (0.205) (0.103) (0.142)
Unadjusted
p-value 0.51 0.44 0.12 0.21 0.25 0.50
Adjusted p-value 0.56 0.68 0.11 0.12 0.40 0.41
Mean dependent
variable 0.46 0.47 0.27 0.29 0.19 0.19
Number of
diseases 32 32 32 32 32 32
N 544 544 672 672 672 672

The dependent variable is given in the top row; the next row indicates the control group used. Results are
from OLS estimation of equation (1). See notes to Table III for more details.



Results for later-stage R&D

See effects for vaccine approvals, though these take time to appear

TABLE IV
EFFECT OF POLICIES ON NUMBER OF NEW APPROVED VACCINES
Propensity
Any Early Prior score
clinicals clinicals approvals Technology weighting
ADOPT,_g, —-0.051 -—0.081 —0.050 —0.083 -0.057
(Policy in place 1-6
years) (0.072) (0.101)  (0.092) (0.102) (0.060)
Unadjusted p-value  0.48 0.42 0.59 0.42 0.34
Adjusted p-value 0.41 0.40 0.38 0.48 0.32
ADOPT,,, 0.364*** 0.346*** 0.409*** 0.305** 0.348**
(Policy in place 7+
years) (0.084) (0.127)  (0.115) (0.126) (0.136)
Unadjusted p-value  <0.01 <0.01 <0.01 0.02 0.02
Adjusted p-value <0.01 0.01 <0.01 0.05 0.02
Mean dependent
variable 0.07 0.12 0.10 0.11 0.08
Number of diseases 32 13 13 15 32
N 576 234 234 270 576

Dependent variable is number of approved vaccines against a given disease in a given year. Results are
from OLS estimates of equation (1) but where the indicator ADOPT has been replaced by two mutually
exclusive indicator variables for a policy being in effect for 1-6 years (ADOPT_g) and for a policy being in
effect 7 or more years (ADOPT,). Top row indicates the control group used. See notes to Table III for more
details.



Interpreting up the results

» The quick initial response of new trials suggests there is a “substantial reservoir”
of technology sitting on the shelf, but whether this turns into a clinical trial is
highly responsive to incentives

» Consistent with this, most of the quick response is driven by established firms,
who are more likely to have technology “sitting around”

» The later response is driven by less established firms



Estimating the static effects

Since new approvals take 7-8 years, a reasonable way to estimate the static effect is to
look at the increase in vaccination rates over the first 8 years after the policy:

Vaccination Coverage Rate

1992 1903 1994 1995 1996 1997 1998 1999 2000 2001
Year
FIGURE IV
Vaccination Coverage Levels among Children 19-35 Months
Data on vaccination rates are from National Health Interview Surveys as reported in CDC [1995a, 1997, 1998, 2001, 2002c].



Estimating the static effects
Since new approvals take 7-8 years, a reasonable way to estimate the static effect is to
look at the increase in vaccination rates over the first 8 years after the policy:
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FIGURE V
Trends in Vaccination Rates for Ages 65+
1989-1993 data are from National Health Interview Surveys as reported in CDC [1995b].
1993-1999 data are from Behavioral Risk Factor Surveillance System and reported in CDC [2002b].



Valuing the static effects

Back-of-the-envelope estimates of the dollar value of these policies multiplies (change
in vaccination rate)x(maximal efficacy of available vaccine)x($ value of elimination of

disease)
TABLE VI
DOLLAR VALUE OF HEALTH BENEFITS FROM STATIC IMPACT OF POLICIES
Dollar value Dollar value of
Estimated of static net static
static impact  impact on Costs of impact on
on vaccination vaccination static policy  vaccination
rate (1) rate (2) impact (3) rate (4)
Hepatitis B
recommendation 0.90 $7,524 $326 $7,198
Medicare covers
Flu 0to0.15 0to $2,775 $60to $111 —$60 to $2,664

All estimates are annual and all dollar amounts are in millions. See text for more details.



Bounding the dynamic effects

Recall from the dynamic framework that there are two sources of dynamic benefits:
1. Increasing private demand, thus increasing Q (vaccine rates)
» Assume this maxes out at 90%
2. Increasing the SMB of vaccines (efficacy rate)
» Assume Hep B had already attained maximum efficacy
» Assume flu vaccine had scope to increase (from 58% — 85%)

Costs are based on the estimated costs of new clinical trials



Estimates of dynamic effects
Upper and lower bounds:

» Hep B: 90% vaccination rate, very effective vaccine — no room for dynamic
improvement! But still see R&D spending...

» Flu: 67% vaccination rate, 63% efficacy rate — room for dynamic improvement

TABLE VII
DOLLAR VALUE OF HEALTH BENEFITS FROM DYNAMIC IMPACT OF POLICIES
Dollar Costs of
value of Increase  Dollar dynamic Dollar value
Increase in increase in in value of policy of net
vaccination vaccination efficacy increase in impact dynamic
rate (1) rate (2) 3) efficacy (4) (5) impact (6)

Upper-bound estimate (maximum potential benefit)
Hepatitis B

recommendation 0 0 0 0 $20 —$20
Medicare covers
Flu 0.23 $3,395 0.27 $6,104 $20 $9,479

Lower-bound estimate (actual benefits to date)
Hepatitis B

recommendation 0 0 0 0 $20 —$20
Medicare covers
Flu 0 0 0.27 $4,307 $20 $4,287

All estimates are annual, and all dollar amounts are in millions. Dollar value of dynamic benefits are
discounted using a 3 percent annual discount rate. See text for more details.



Value of talking to actual experts

CITED INTERVIEWS

Doctors
Dr. George Grady, physician and vaccine researcher (Massachusetts Public
Health Biologics Laboratories), telephone conversation, November 2000.

Individuals in the pharmaceutical industry

Deborah Alfona, Merck, telephone conversation, June 2001, Director of health
policy for vaccines.

Harry Greenberg, Aviron, Mountain View, CA, February 2001.

Bronwen Kaye, American Home Products, telephone interview, December 2000.

Richard Manning, Pfizer, telephone conversation, September 2000.

Lorri Michael, Merck, telephone conversation, June 2001.

Courtney Piron, American Home Products, telephone conversation, October 2000.

Mark Sanyour, Merck, several phone and email correspondences.

Jan Wolters, Merck, Cambridge, MA, June 2001.

Public Sector
Bob Snyder, CDC, several phone and email correspondences.



Market size and innovation

Moscona and Sastry (2023)

Market design for innovation



Does Directed Innovation Mitigate Climate Damage? Evidence from US
Agriculture

Helping farmers.
Fighting climate

» In the face of global warming, has
innovation redirected toward the most
affectec.i crops and 'Fhe technologies S
best suited for helping? Growth Plan

» If yes, how has this affected
agriculture’s resilience to climate
change?

The Good Growth Plan: a bold new set
of commitments for our future

fight
1 the heart of farming's productive future
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Climate change and innovation incentives

Should we expect to see more or less innovation in crops that are the most impacted
by climate change?



Climate change and innovation incentives
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» If innovation substitutes for favorable climate conditions (for example, making
seeds more heat resistant), then climate change leads to more innovation for the
most affected crops. Innovation will blunt the impact of climate change



Climate change and innovation incentives

Should we expect to see more or less innovation in crops that are the most impacted
by climate change?

» If innovation substitutes for favorable climate conditions (for example, making
seeds more heat resistant), then climate change leads to more innovation for the
most affected crops. Innovation will blunt the impact of climate change

» If innovation complements favorable climate conditions (for example, developing
higher yield seeds that need more precise climactic conditions), then climate
change will lead to less innovation for the most affected crops. Innovation can
exacerbate the effects of climate change



Climate change and innovation incentives

Should we expect to see more or less innovation in crops that are the most impacted
by climate change?

» If innovation substitutes for favorable climate conditions (for example, making
seeds more heat resistant), then climate change leads to more innovation for the
most affected crops. Innovation will blunt the impact of climate change

» If innovation complements favorable climate conditions (for example, developing
higher yield seeds that need more precise climactic conditions), then climate
change will lead to less innovation for the most affected crops. Innovation can
exacerbate the effects of climate change

Ultimately the authors argue this is an empirical question



Innovation and resilience

A few more subtleties:
» Two objects of interest

1. Amount of innovation
2. Climate resilience (—0 farm profit/d climate)
» High resilience value — same climate shock has a smaller absolute value effect on

farm profits
» Price effects will also matter — a negative climate shock will reduce crop yields
which will increase prices of the final crop. Higher prices should induce more
innovation. This is therefore a countervailing force when firms face a bad climate

shock



Putting it all together

Summary of model predictions:
In a sector damaged by climate change...

Climate-Substituting Climate-Complementing

Technology Technology
Price Effects (b) Innovation |
Weak and Resilience 1

(a) Innovation 1

Price Effects and Resilience 1 (b) Innovation 1

Strong and Resilience |

FIGURE I

Summary of Model Cases




Data requirements

Need to measure three things:
1. Exposure to damaging climate change
2. Crop-specific innovation

3. Local agricultural outcomes (profitability)



Measuring climate change exposure |

» Use daily grid-level (2.5 mile x 2.5 mile) temperature data from 1950 to present,
obtained from the PRISM Climate Group
> Argue that extreme values are what is relevant (hence daily data is critical)
» Use crop-level upper temperature thresholds from EcoCrop
» These thresholds vary from 15°C to 35°C (SD = 5°C)
» Define a variable ExtremeExposure which integrates the temperature in excess of
each crop’s threshold during the April-October growing season
» For example, for a crop with a threshold of 30°C, one day at 35°C counts as 5 days.
» In the same example, five days at 31°C also counts as five days

P Validate this measure against crop yields



Measuring climate change exposure |l

» The ExtremeExposure measure is unique at the county (i), crop (k), decade (t)
level

> Want to aggregate up to the k, t level (since innovation happens at the crop-year
level). Weight by each county's share of the crop’s total planted area:

Pre
Areah K

ExtremeExposure, , = E —_—
’ > Area;y

i

- ExtremeExposure;

where Areaf,r(e is the area devoted to crop k in county / prior to the sample period

(in 1959)



Measuring innovation

Innovation is measured a few ways:

» Innovation measured using the digitized USDA Variety Name List (easy to link
innovation to individual crops)

» Patent data (more difficult to link innovation to individual crops)



Measuring agricultural outcomes

Argue that land values are a sufficient statistic for crop profitability
» Measure the value of land per acre
» Data comes from the US Census of Agriculture

P> Also collect data on crop revenue, non-crop revenue, and profits for robustness
checks



Descriptive results
New varieties track climate change exposure:

Figure 2: Changes in Extreme Exposure and Variety Releases Across Decades: Examples

(a) Corn (b) Cotton (c) Rice

Com Cotton Rice

log New Verietes Released
Changs i Extreme Exposure

(d) Lettuce (f) Lima Beans
Lettuces Lima Beans
3 N i 3 - §
ge s fo 4
§ 20 § \ N g
b
“ 400 5
1960 2020 220 1960 1980 00 2020

Notes: Each graph reports the change in ExtremeExposure, , (light line, left y-axis) and the change in
the (log of the number of) new varieties released (dark line, right y-axis) across decades.



Key regression

The authors estimate the following long-difference regression:

yk = exp{d - AExtremeExposure, + I’X,/( + ek}
where:

P y is the number of seed varieties developed during the 1960-2016 sample period

> AExtremeExposure, is the change in crop-level extreme exposure between
1960-2016

> X, is a vector of crop-level controls

Recall that § > 0 implies that innovation is directed toward crops that have been
exposed to more extreme temperatures, while < 0 implies the opposite Thoughts on

identification?



Regression results

More innovation for more climate-exposed crops. A one standard deviation increase in
climate distress led to a 0.2 standard deviation increase in new varieties

Table 1: Temperature Distress Induces Crop Variety Development
(€Y) @) 3 “) ®) (6)

Dependent Variable is New Crop Varieties

Sample Period 1950-2016 1980-2016

A ExtremeExposure 0.0167%*  0.0171%* 0.0136** 0.0184*** 0.0226** 0.0338***
(0.00424) (0.00436) (0.00372) (0.00541) (0.00668) (0.00745)

Log area harvested Yes Yes Yes Yes Yes Yes
Pre-period climate controls No Yes Yes Yes Yes Yes
Pre-period varieties No No Yes Yes Yes Yes
Cut-off temp. and cut-off temp sq. No No No Yes Yes Yes
Average Temperature Change No No No No Yes No
Observations 69 69 69 69 69 69

Notes: The unit of observation is a crop. The outcome variable is the number of crop-specific varieties released and the
sample period for each specification is listed at the top of each column. The controls included in each specification are
noted at the bottom of each column. Robust standard errors are reported in parentheses and *, **, and *** indicate
significance at the 10%, 5%, and 1% levels.



Regression results
No evidence of anticipation or pre-trends:

Figure 3: Extreme Exposure and Variety Development: Partial Correlation Plot (OLS)

(a) Partial Correlation Plot (t = 3.25) (b) Placebo Partial Correlation Plot (t = 0.01)
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coef = .00150936, (robust) se = .00046438, t = 3.25

-500 -400 -300 -200 -100 O 100 200 300 400 500 600 700 800
A ExtremeExposure 1980 to Present | X
coef = 8.656e-06, (robust) se = 00078609, t = .01

Notes: The unit of observation is a crop and the full set of baseline controls are included on the right
hand side in each specification, including log of pre-period area, pre-period temperature, pre-period
precipitation, and (asinh of) pre-period variety releases. The coefficient estimate, standard error, and
t-statistic are reported at the bottom of each graph.



Climate vs. non-climate innovation

Effects appear to be driven by climate-related innovation. Mine patent text for
mentions of patents to code patents as climate-related or non-climate related

Table 2: Temperature Distress and Climate-Related Patenting

1 (2)
Patents not Patents
Dependent Variable: related to  related to

the climate _the climate

A ExtremeExposure 0.00335 0.0118**
(0.00458) (0.00552)

All Baseline Controls Yes Yes

Observations 69 69

Notes: The unit of observation is a crop and both columns report Poisson pseudo-
maximum likelihood estimates. The outcome variables are the number of crop-specific
agricultural patents thatare notrelated to the climate (column 1) and the number of
crop-specific agricultural patents related to the climate (column 2). All baseline
controls are included in both specifications. Robust standard errors are reported in
parentheses and * ** and *** indicate significance atthe 10%, 5%, and 1% levels.



Climate vs. non-climate innovation

Effects appear to be driven by climate-related innovation. Mine patent text for
mentions of patents to code patents as climate-related or non-climate related

Figure 5: Temperature Distress and the Share of Climate-Related Patents
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coef =.00020476, (robust) se = .00008041, t = 2.55
Notes: This figure reports the partial correlation plot between AExtremeExposure, and the share of
crop-specific patented technologies released since 1960 that are related to the climate. The full set of
baseline controls are included, including the relevant pre-period dependent variable in this context:
the share of climate-related patented technologies developed between 1900-1960. The coefficient
estimate, standard error, and t-statistic are reported at the bottom of the figure.



Estimating resilience

Land values fall less in areas with more innovation (holding the amount of extreme
temperature exposure constant) — consistent with innovation leading to increased
resilience in the substitutes case

Figure 6: Marginal Effect of County-Level Extreme Exposure as a Function of Innovation Exposure

Marginal Effect of Extreme Temperature Exposure

0 10 25 50 75 9‘0 100
Innovation Exposure Quantile
Notes: This figure reports marginal effect of extreme-temperature exposure on (log of) agricultural
land values for quantiles of the innovation exposure distribution. The solid and dashed lines are 90%
and 95% confidence intervals respectively.



Damage mitigation due to innovation

» Model land values as a function of ExtremeExposure, InnovationExposure,
interaction. Use these coefficients to predict land values under two scenarios:

1. No climate change: ExtremeExposure and InnovationExposure are fixed at t; values
2. Yes climate change, no innovation: InnovationExposure is fixed at tp value

> Aggregate up to the national level to estimate the total value of US agricultural
land under each scenario

» Compare these to actual fitted values (yes climate change, yes innovation case)

> Exercise suggests that about 20% of climate damage as measured by land values
has been mitigated by innovation



Market size and innovation

Market design for innovation
Kremer and Williams (2010)



Can we do better than patents?

» Seen lots of evidence in the past two lectures that innovation responds to
incentives

P> Patents provide ex-ante incentives to innovate

> But they generate ex-post efficiency costs due to monopoly power
> Can we do better?



Prizes

Reward inventors who meet a set of technical specifications laid out in advance
(typically the first inventor)

Example: the X-Prize Foundation regularly promises and awards prizes. First
offered a $10 million price for the first non-governmental organization to launch a
reusable, manned spacecraft into space (prize was awarded in 2004 to a team lead
by aircraft designer Burt Rutan financed by Microsoft cofounder Paul Allen)
Challenge: what “counts?”

In general, there are tradeoffs between ex-ante commitment and ex-post discretion



Example of the “what counts” problem

» Board of Longitude prize offered in the
1700s for a tool that would determine
longitude

» John Harrison (a clockmaker)
developed a chronometer which used
time to determine longitude — very
different from what the committee
was expecting

» It took 12 years and much testing
before they were willing to award the
prize




Advance market commitments

» Similar to a prize, but condition payout on market use

» Sponsors commit in advance to underwrite a guaranteed price for a maximum
number of units if the innovation meets some technical specifications

> Key point: payment only occurs if item is purchased! Removes some of the need
for squishy judgement as to “what counts”

» This mechanism was used by GAVI to help bring COVID-19 vaccines to
low-income countries



Patent buyouts

» Ex-post, buy the patent rights from
the innovating firm and place the
invention in the public domain,
allowing competition

» Example: In 1839, the French
government purchased the patent for
Daguerreotype photography. This
sped the adoption and increased
follow-on innovation

» Key challenge: what is the right price
to pay? Kremer (1998) proposes an
auction-type system that would
incentivize firms to truthfully reveal
their valuations
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