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Motivating innovation

▶ Standard principal-agent problem trades off pay-for-performance (to induce effort)
with flat rate (to mitigate risk aversion)

▶ This paper recognizes that agents might have choice over what they work on, and
that innovative activities might be more risky

▶ If you want the agent to choose the innovative activity, you have to structure the
contract accordingly



Bandit problems

This paper models the choice of whether to innovate as a bandit problem

▶ In bandit problems, the agent is uncertain of the payoffs resulting from some of
the actions she might take

▶ Agents have a choice:
▶ They can exploit the actions where they know the payoff
▶ Or, they can explore the actions where they don’t know the payoff, and learn. This

is how Manso models innovation: exploring unknown actions

▶ This sets up a tradeoff: exploration reveals information of potentially superior
actions, but may also lead to waste if the action is inferior. Exploitation ensures
known payoffs, but may prevent the discovery of superior actions



Embedding the bandit problem in a P-A problem

In this paper, we are trying to design a contract to motivate someone else to
potentially innovate

▶ A venture capital firm designing incentives for a founder

▶ A board designing incentives for a CEO at an innovative company

Embed the bandit problem inside a principal-agent model



Start with the bandit problem

Setup:

▶ Agent lives for 2 periods

▶ In each period, agent takes an action i ∈ {1, 2}
▶ Each action i has a probability of success (S) equal to pi and a probability of

failure (F ) equal to 1− pi
▶ Action 1 is the “conventional” method, and thus p1 is known. No learning occurs:

E [p1|F , 1] = E [p1] = E [p1|S , 1]

▶ Action 2 is the “innovative” method, and thus p2 is not known. However, learning
can occur:

E [p2|F , 2] < E [p2] < E [p2|S , 2]

▶ Assumption: E [p2] < p1 < E [p2|S , 2]. Interpret?



Action plan

▶ Agent chooses an action plan: an action for period 1, and an action for period 2
(conditional on the outcome of period 1). Call this ⟨i , j , k⟩ where i is period 1
action, j is period 2 action conditional on success, and k is period 2 action
conditional on failure

▶ The action plan should maximize expected payoff (assume agent is risk-neutral):

{E [pi ]S + (1− E [pi ])F}︸ ︷︷ ︸
period 1

+E [pi ]{E [pj |S , i ]S + (1− E [pj |S , i ])F}︸ ︷︷ ︸
period 2 conditional on S

+(1− E [pi ]){E [pk |F , i ]S + (1− E [pk |F , i ])F}︸ ︷︷ ︸
period 2 conditional on F



Exploitation versus exploration

▶ Action plan ⟨1, 1, 1⟩ is called exploitation

▶ Action plan ⟨2, 2, 1⟩ is called exploration

▶ These are the two key action plans to consider (why)?

▶ The payoff from exploration is higher than for exploitation iff:

E [p2] ≥ p1 −
p1(E [p2|S , 2]− p1)

1 + (E [p2|S , 2]− p1)︸ ︷︷ ︸
information premium



Embedding this in the principal-agent problem

▶ Principal hires the agent to perform the task

▶ Agent incurs private costs c1 ≥ 0 if he takes action 1, c2 ≥ 0 if he takes action 2,
or he can shirk and incur zero costs

▶ Shirking results in the lowest probability of success: p0 < E [pi ] for i = 1, 2

▶ Principal cannot observe which action the agent takes

▶ Can only offer a fully state-contingent contract:
w⃗ = ⟨wF ,wS ,wFF ,wFS ,wSF ,wSS⟩



Agent payoffs

▶ For action plan ⟨i , j , k⟩ the agent expects payoffs:

W (w⃗ , ⟨i , j , k⟩) = {E [pi ]wS+(1−E [pi ])wF}+E [pi ]{E [pj |S , i ]wSS+(1−E [pj |S , i ])wSF}

+(1− E [pi ]){E [pk |F , i ]wFS + (1− E [pk |F , i ])wFF}

▶ And expects costs:

C (⟨i , j , k⟩) = ci + E [pi ]cj + (1− E [pi ])ck



Optimal contract

▶ The optimal contract w⃗ that implements ⟨i , j , k⟩ minimizes the principal’s
payments:

W (w⃗ , ⟨i , j , k⟩)

▶ Subject to the IC constraints:

W (w⃗ , ⟨i , j , k⟩)− C (⟨i , j , k⟩) ≥ W (w⃗ , ⟨l ,m, n⟩)− C (⟨l ,m, n⟩)

▶ This is a linear program with 6 unknowns (w⃗ = ⟨wF ,wS ,wFF ,wFS ,wSF ,wSS⟩)
and 27 constraints (33 possible combinations of actions)



Special cases

▶ If c1 = c2 = 0 there is no conflict of interest between principal and agent
(remember that the agent is risk neutral here). Thus, the agent should just solve
the 2-armed bandit problem

▶ if c2 = ∞, exploration is too costly to ever be worth it. Thus, the agent only
chooses between shirking and exploitation, and we collapse to the standard P-A
problem



Optimal contract that implements exploitation

What is the optimal contract that implements action plan ⟨1, 1, 1⟩? I will skip the
explicit derivation (see paper) but here is the intuition. Key is to think about which of
the (27) constraints will bind:

▶ The principal must prevent the agent from both shirking and exploring

▶ If c2 is high relative to c1 only the shirking constraint is binding (similar to
standard P-A problem). Pay for success (agent is risk-neutral)

▶ If c2 is low relative to c1, need to also prevent the agent from exploring. Pay more
for success in the first period



Optimal contract that implements exploitation



Optimal contract that implements exploration

What is the optimal contract that implements action plan ⟨2, 2, 1⟩? I will skip the
explicit derivation (see paper) but here is the intuition. Key is to think about which of
the (27) constraints will bind:

▶ The principal must prevent the agent from both shirking and exploiting

▶ Do not pay after failure in the second period (this only gives incentive to shirk)

▶ Do not pay for success in the first period (this gives incentive to exploit)

▶ If c2 is low relative to c1, then we only need to worry about shirking. Pay for
repeated success to avoid this (wSS)

▶ If c2 is high relative to c1, then we need to structure the contract to also avoid
exploiting. This can be done by further increasing (wSS) and/or by explicitly
rewarding first period failure (wF )



Optimal contract that implements exploration



Key takeaways

Contracts that want to encourage innovation should:

▶ Delay compensation

▶ Not reward short-term success

▶ Possibly reward short-term failure!

▶ The path of performance matters (wS + wSF < wF + wFS)

▶ Extension of the model: sharing feedback (information on performance that only
that only the principal has) encourages innovation
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Incentives and creativity: evidence from life science

This paper is an empirical test of Manso (2010). Key idea is that there are two types
of funding for academic life sciences:

▶ NIH grants
▶ Short award cycles: 3 years
▶ Limited feedback
▶ Must commit to project

▶ Howard Hughes Medical Investigator (HHMI) awards
▶ Long award cycles: 5 years with first renewal (almost) guaranteed
▶ Provide high quality feedback to awardees
▶ “People not projects” approach allows for easy pivoting

Which funding scheme leads to more exploration?



Challenge I: HHMI selection is non-random

HHMI is a very prestigious program and selection is inherently non-random. In fact,
HHMI is looking for scientists whom they expect to do creative work

▶ Authors wanted to get a list of runners-up, but were unable to do so

▶ Instead, construct a control group of similar scientists using early career prize
winners (Pew, Searle, Beckman, Packard, Rita Allen)

▶ Still, scientists in the HHMI and non-HHMI groups don’t look well-balanced on
important covariates

▶ Authors use a propensity score weighting approach, using covariates to predict
selection into HHMI

▶ Also used an individual FE approach, though note that selection here likely occurs
based on trends not just levels



Challenge II: measuring creativity

Measuring creativity or risk taking is difficult. One idea: creative projects should be
higher variance

▶ Authors count the number of papers that make it into the top X percentile of the
citation distribution as a measure of “big hits.”
▶ Since older papers have more time to accrue citations, these percentiles are

publication-year specific

▶ Creative and risky work may also lead to more “flops” so they also count papers
that fall in the bottom vintage-specific quartile

▶ Also measure “hits” and “flops” relative to individual past performance

▶ Alternatively, use MeSH keywords to directly measure the research content



HHMI appointment is correlated (causes?) more papers and more hits

Control scientists are weighted by inverse probability of treatment



Results suggest more risk-taking in general

In addition to more hits, we see more flops, new topics, bigger pivots



Takeaways

▶ Results are striking, if not conclusive
▶ Small sample (possible to do a larger version today!)
▶ P-score matching is not bulletproof

▶ Yet, on the question of “what is the optimal mechanism to fund science” this is
some of the only evidence we have!

▶ This is a very hot policy question right now, and this paper has been influential
▶ Lots of discussion that the NIH is too risk-averse
▶ Introduction of MIRA program at NIH
▶ Introduction of ARPA-H
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Spillovers and returns from public R&D

If we want to know if we are funding to little (or too much) science, a critical question
is: “what is the social return on the marginal dollar spent on science funding?” The
question is challenging for several reasons:

▶ Measuring returns is difficult because positive spillovers are difficult to track
through time and space

▶ Selection is likely an issue: government may fund projects that are most likely to
generate spillovers. Ideal experiment would randomly vary the amount of funding
in different areas

▶ Publicly funded research may crowd out other types of funding (private-sector
research)



Azoulay, Graff Zivin, Li, and Sampat (2019)

▶ The authors study the effect of marginal NIH funding on patents. Patents may
not be the only margin of spillover, so their estimates can be interpreted as a
lower bound

▶ Use data on underlying application scores (of both accepted and rejected
applications) and institutional knowledge of the NIH funding scheme to construct
an instrument for funding amounts



Measuring spillovers

For every NIH grant, the authors...

▶ Find all the publications that cite the grant as a source of funding. This is the
“publicly funded research”

▶ Find all the private-sector patents that cite the “publicly funded research.” Note
that if a patent is linked back to N NIH grants, each grant gets credit for 1/N of
the patents (conservative). On average, patents cite 13 NIH grants so there is a
lot of credit sharing

▶ Define a variable Patentsd̃st as the total number of patents to disease d in study
section s in year t



How the NIH funds projects I

▶ The NIH budgets funding at the Institute or Center (IC) level
▶ Examples: National Cancer Institute, National Heart, Lung, and Blood Institute.
▶ There are 27 of these ICs

▶ However, applications are evaluated at the study section level
▶ Example: Cellular Signaling and Regulatory Systems
▶ Multiple ICs fall within a single study section
▶ There are 180 study sections
▶ Each section assigns proposals a score and a rank (“science rank”)



How the NIH funds projects I



How the NIH funds projects II

▶ Projects are then sent back from the study sections to their respective ICs

▶ They are ordered by their science ranks, creating a “rank of ranks”

▶ Projects are funded sequentially, up to the budgeted limit within the IC



How the NIH funds projects II



How the NIH funds projects II

▶ Projects are then sent back from the study sections to their respective ICs

▶ They are ordered by their science ranks, creating a “rank of ranks”

▶ Projects are funded sequentially, up to the budgeted limit within the IC



Instrument for funding at the DST level

▶ Focusing on projects ±5 of the payline, the authors argue that these are of similar
quality (in fact, projects with higher science scores can have lower rank-of-rank
scores)

▶ And yet, within this band, there is variation in how much funding each DST gets

▶ Call this the “windfall” and use this to instrument for total DST funding



Instrument for funding at the DST level



Empirical strategy

Key regression:

Patentsd̃st = α0 + α1Fundingdst + Λ(#Applicationsdst) + Φ(ScoreControlsdst)

+δds + γdt + νst + εdst

where Funding is instrumented with windfall amounts (the amount of DST funding
that comes from the window around the payline)



First stage and placebo checks



2SLS results
An additional $10 million in NIH funding leads to 2 to 2.5 additional patents. Since
the average NIH grant is $1.6 million, this is 1 patent for every 2-3 grants



Testing for crowd-out

▶ If NIH funding simply replaces research funding that would have occurred anyway,
then the total number of DST patents should not change, even if the number of
DST patents linked to NIH grants increases

▶ Create a new outcome: total number of DST patents. But without NIH funding,
how do you categorize the DST? Authors look for patents that cite papers that
are similar to papers funded by a particular DST

▶ If there is full crowd-out, the coefficient on Funding should be 0



Crowd-out results
Results not consistent with crowd-out...coefficient is in fact larger



Back-of-the-envelope returns

▶ What is the dollar value of a patent? Very unclear

▶ But maybe less unclear for patents on marketed drugs?

▶ If the authors restrict to patents for marketed drugs and assign a PDV of $3.5
billion to each drug, they find that an additional $10 million in NIH funding leads
to $14.7 million in patent value (nearly 50% return)
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